贝叶斯优化LSTM分类预测(matlab代码)

数据为Excel分类数据集数据
数据集划分为训练集、验证集、测试集,比例为8:1:1
数据处理: 在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。
数据标准化: 对数据进行了 Zscore 标准化处理,使得数据的均值为 0,标准差为 1,有利于提高模型的收敛速度和性能。
参数设置:代码中设置了贝叶斯迭代次数 BO iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。
结果展示: 在算法处理块结束后,展示了模型在训练集、验证集和测试集上的准确率,以及程序的运行时长。这有助于对模型的性能进行评估和比较。
输出的定量结果如下:
训练集正确率:0.99187
验证集正确率:0.9375
测试集正确率:1
运行时长:25.39
代码有详细中文介绍。
代码能正常运行时不负责答疑!

电子产品,一经出售,概不退换

算法设计、毕业设计、期刊专利!感兴趣可以联系我。

🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值