1.vector深度剖析及模拟实现
1.1 std::vector的核心框架接口的模拟实现myVector::vector
#pragma once
#include <assert.h>
#include <string.h>
namespace myVector
{
template<class T>
class vector
{
public:
// Vector的迭代器是一个原生指针
typedef T* iterator;
typedef const T* const_iterator;
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin() const
{
return _start;
}
const_iterator end() const
{
return _finish;
}
vector()
:_start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{}
template<class InputIterator>
vector(InputIterator first, InputIterator last)
:_start(nullptr)
,_finish(nullptr)
,_endOfStorage(nullptr)
{
reverse(last - first);
while (first != last)
{
push_back(*first);
++first;
}
}
void swap(const vector<T>& tmp)
{
std::swap(_start, tmp._start);
std::swap(_finish, tmp._finish);
std::swap(_endOfStorage, tmp._endOfStorage);
}
//v1(v2)
vector(const vector<T>& v)
:_start(nullptr)
,_finish(nullptr)
,_endOfStorage(nullptr)
{
vector<T> tmp(v.begin(), v._end());
swap(tmp);//this->swap(tmp);
}
//v1 = v2
vector<T>& operator=(const vector<T> v)
{
this->swap(v);
return *this;
}
~vector()
{
delete[] _start;
_start = _finish = _endOfStorage;
}
size_t capacity()
{
return _endOfStorage - _start;
}
size_t size()
{
return _finish - _start;
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
//int i = int();
void resize(size_t n, const T& val = T())
{
if (n > capacity())
{
reverse(n);
}
if (n < size())
{
_finish = _start + n;
}
else
{
while (_finish != _start + n)
{
*_finish = val;
_finish++;
}
}
}
void reverse(size_t n)
{
if (n > capacity())
{
size_t sz = size();
T* tmp = new T[n];
//1.memcpy(tmp, _start, sizeof(T) * size());//内置类型 int char 浅拷贝
//2.自定义类型 for + opereator= 深拷贝
for (size_t i = 0; i < size(); ++i)
{
tmp[i] = _start[i];
}
delete[] _start;
_start = tmp;
_finish = _start + sz;
_endOfStorage = _start + n;
}
}
void check_capacity()
{
if (_finish == _endOfStorage)
{
size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;
reverse(newcapacity);
}
}
void push_back(const T& x)
{
check_capacity();
*_finish = x;
++_finish;
}
void pop_back()
{
assert(_finish > _start);
_finish--;
}
//返回删除的位置
iterator insert(iterator pos, const T& val)
{
assert(pos >= _start && pos <= _finish);
size_t posi = pos - _start;//提前保存pos位置,防止增容pos失效
check_capacity();
pos = _start + posi;
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = val;
++_finish;
return pos;
}
iterator erase(iterator pos)
{
assert(pos >= _start && pos < _finish);
iterator it = pos + 1;
while (it != _finish)
{
*(it - 1) = *it;
++it;
}
--_finish;
return pos;
}
private:
iterator _start;// 指向数据块的开始
iterator _finish;// 指向有效数据的尾
iterator _endOfStorage;// 指向存储容量的尾
};
}
1.2 使用memcpy拷贝问题
假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?
int main()
{
myVector::vector<string> v;
v.push_back("1111");
v.push_back("2222");
v.push_back("3333");
v.push_back("4444");
v.push_back("5555");
return 0;
}
问题分析:
- memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
- 如果拷贝的是内置类型的元素,memcpy即高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。(比如string)