import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 导入数据
train_ds = torchvision.datasets.MNIST('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
test_ds = torchvision.datasets.MNIST('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
# 加载数据
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
print(imgs.shape)
# 数据可视化
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
# 维度缩减
npimg = np.squeeze(imgs.numpy())
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i + 1)
plt.imshow(npimg, cmap=plt.cm.binary)
plt.axis('off')
# plt.show() 如果你使用的是Pycharm编译器,请加上这行代码
torch.Size([32, 1, 28,28])![]()
# 构建CNN网络
import torch.nn.functional as F
num_classes = 10 # 图片的类别数
class Model(nn.Module):
def __init__(self):
super().__init__()
# 特征提取网络
self.conv1 = nn.Conv2d(1, 32, kernel_size=3) # 第一层卷积,卷积核大小为3*3
self.pool1 = nn.MaxPool2d(2) # 设置池化层,池化核大小为2*2
self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool2 = nn.MaxPool2d(2)
# 分类网络
self.fc1 = nn.Linear(1600, 64)
self.fc2 = nn.Linear(64, num_classes)
# 前向传播
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)
summary(model)
# 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
# 训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
Epoch: 1, Train_acc:78.7%, Train_loss:0.740, Test_acc:93.1%,Test_loss:0.232 Epoch: 2, Train_acc:94.3%, Train_loss:0.187, Test_acc:96.6%,Test_loss:0.116 Epoch: 3, Train_acc:96.4%, Train_loss:0.116, Test_acc:97.4%,Test_loss:0.086 Epoch: 4, Train_acc:97.2%, Train_loss:0.091, Test_acc:97.5%,Test_loss:0.079 Epoch: 5, Train_acc:97.6%, Train_loss:0.076, Test_acc:97.8%,Test_loss:0.065 Done
收获:之前一直在使用tf框架 今天开始学习使用pytorch框架 由于不熟悉 框架 代码学习较慢 且运行出现多处问题 接下来会继续学习pytorch框架下的项目 更多的了解两框架之间的区别