Mamba2-minimal(mamba2最简实现)的使用与若干问题解决办法

mamba2-minimal地址:https://github.com/tommyip/mamba2-minimal

mamba2-minimal是Mamba-2 模型的最小单文件实现,由于官方实现较于复杂,不利于理解原理以及后期对模型进行改进,本文对mamba2-minimal模型进行了本地运行实验并总结了调试过程中的若干问题解决方法。
博主是在python3.8环境下运行的,出现的问题基本是由于typing库,理论上只要你的python版本大于3.10就不会出现这些问题。

问题一:TypeError: unsupported operand type(s) for |: 'type' and 'type'

原因分析:出现这个错误的原因是使用了|运算符来表示类型联合,但这个特性仅在Python 3.10及以后版本中才支持,如果你使用的Python版本低于3.10,就会出现你遇到的这个错误。

解决办法:使用typing_extensions模块来兼容较低版本的Python。在typing模块中,可以用Union来表示联合类型,以下是修改后的代码:

# 导入typing模块中的Union类型
from typing_extensions import Union
import torch

# 使用Union来指定类型
Device: TypeAlias = Union[str, torch.device, None]

问题二:line 119, in Mamba2LMHeadModel self, input_ids: LongTensor, h: list[InferenceCache] | list[None] | None = None TypeError: 'type' object is not subscriptable

原因分析:因为在Python 3.8中不支持使用下标表示法来定义类型提示。

解决办法:可以将类型提示改为使用typing_extensions模块中的ListUnion

修改前:

self, input_ids: LongTensor, h: list[InferenceCache] | list[None] | None = None

修改后:

from typing_extensions import List, Union

self, input_ids: LongTensor, h: Union[List[InferenceCache], List[None], None] = None

 第120行修改为:

-> Tuple[LongTensor, List[InferenceCache]]:

第155行修改为:

-> Iterable[Tuple[int, List[InferenceCache]]]:

第225行修改为:

def forward(self, u: Tensor, h: Union[InferenceCache, None] = None):

第279行修改为:

  def step(self, u: Tensor, h: InferenceCache) -> Tuple[Tensor, InferenceCache]:

头文件导入:

from typing_extensions import Iterable, NamedTuple, TypeAlias, cast, Union, List, Tuple

问题三:RuntimeError: expected self and mask to be on the same device, but got mask on cpu and self on cuda:0

原因分析:这里我想利用mamba2进行多输入多输出的预测任务,该错误表明xmask变量在不同的设备上,导致了RuntimeError。我们需要确保所有张量在相同的设备上进行计算。

解决办法:确保所有张量和模型参数都移动到相同设备(CPU/GPU)上,需要在模型和所有相关函数中显式地指定设备。下面是如何修改代码以确保所有张量和模型参数都移动到GPU上。 

mamba2-minimal完整代码:

import json
from dataclasses import dataclass
from typing_extensions import Iterable, NamedTuple, TypeAlias, cast, Union, List, Tuple

import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import LongTensor, Tensor, nn

Device = Union[str, torch.device, None]


@dataclass
class Mamba2Config:
    d_model: int  # model dimension (D)
    n_layer: int = 24  # number of Mamba-2 layers in the language model
    d_state: int = 128  # state dimension (N)
    d_conv: int = 4  # convolution kernel size
    expand: int = 2  # expansion factor (E)
    headdim: int = 2  # head dimension (P)
    chunk_size: int = 1  # matrix partition size (Q)
    vocab_size: int = 50277
    pad_vocab_size_multiple: int = 16

    def __post_init__(self):
        self.d_inner = self.expand * self.d_model
        assert self.d_inner % self.headdim == 0
        self.nheads = self.d_inner // self.headdim
        if self.vocab_size % self.pad_vocab_size_multiple != 0:
            self.vocab_size += (
                self.pad_vocab_size_multiple
                - self.vocab_size % self.pad_vocab_size_multiple
            )


class InferenceCache(NamedTuple):
    conv_state: Tensor  # (batch, d_inner + 2 * d_state, d_conv)
    ssm_state: Tensor  # (batch, nheads, headdim, d_state)

    @staticmethod
    def alloc(batch_size: int, args: Mamba2Config, device: Device = None):
        return InferenceCache(
            torch.zeros(
                batch_size, args.d_inner + 2 * args.d_state, args.d_conv, device=device
            ),
            torch.zeros(
                batch_size, args.nheads, args.headdim, args.d_state, device=device
            ),
        )


class Mamba2LMHeadModel(nn.Module):
    def __init__(self, args: Mamba2Config, device: Device = None):
        super().__init__()
        self.args = args
        self.device = device

        self.backbone = nn.ModuleDict(
            dict(
                embedding=nn.Embedding(args.vocab_size, args.d_model, device=device),
                layers=nn.ModuleList(
                    [
                        nn.ModuleDict(
                            dict(
                                mixer=Mamba2(args, device=device),
                                norm=RMSNorm(args.d_model, device=device),
                            )
                        )
                        for _ in range(args.n_layer)
                    ]
                ),
                norm_f=RMSNorm(args.d_model, device=device),
            )
        )
        self.lm_head = nn.Linear(
            args.d_model, args.vocab_size, bias=False, device=device
        )
        self.lm_head.weight = self.backbone.embedding.weight

    @staticmethod
    def from_pretrained(huggingface_model_id: str, device: Device = None):
        from transformers.utils import CONFIG_NAME, WEIGHTS_NAME
        from transformers.utils.hub import cached_file

        config_path = cached_file(huggingface_model_id, CONFIG_NAME)
        assert config_path, "Failed to get huggingface config file"
        state_dict_path = cached_file(huggingface_model_id, WEIGHTS_NAME)
        assert state_dict_path, "Failed to get huggingface state dict file"

        config = json.load(open(config_path))
        args = Mamba2Config(
            d_model=config["d_model"],
            n_layer=config["n_layer"],
            vocab_size=config["vocab_size"],
            pad_vocab_size_multiple=config["pad_vocab_size_multiple"],
        )

        map_location = "cpu" if device is None else device
        state_dict = torch.load(
            state_dict_path, weights_only=True, map_location=map_location, mmap=True
        )
        model = Mamba2LMHeadModel(args, device=device)
        model.load_state_dict(state_dict)
        model.eval()
        return model

    def forward(
        self, input_ids: LongTensor, h: Union[List[InferenceCache], List[None], None] = None
    ) -> Tuple[LongTensor, List[InferenceCache]]:
        seqlen = input_ids.shape[1]

        if h is None:
            h = [None for _ in range(self.args.n_layer)]

        x = self.backbone.embedding(input_ids).to(self.device)
        for i, layer in enumerate(self.backbone.layers):
            y, h[i] = layer.mixer(layer.norm(x), h[i])
            x = y + x

        x = self.backbone.norm_f(x)
        logits = self.lm_head(x)
        return logits[:, :seqlen], cast(List[InferenceCache], h)

    def generate(
        self,
        input_ids: LongTensor,
        max_new_length: int = 20,
        temperature: float = 1.0,
        top_k: int = 50,
        top_p: float = 1.0,
        eos_token_id: int = 0,
    ) -> Iterable[Tuple[int, List[InferenceCache]]]:
        prefix, tokens = input_ids[:-1], input_ids[-1:].unsqueeze(0)

        n_chunked = (prefix.shape[0] // self.args.chunk_size) * self.args.chunk_size
        if n_chunked > 0:
            _, h = self(prefix[:n_chunked].unsqueeze(0), None)
        else:
            h = [
                InferenceCache.alloc(1, self.args, device=self.device)
                for _ in range(self.args.n_layer)
            ]
        for i in range(n_chunked, prefix.shape[0]):
            _, h = self(prefix[i : i + 1].unsqueeze(0), h)

        for _ in range(max_new_length):
            with torch.no_grad():
                out, h = self(tokens, h)
            logits = out[0, -1]
            if temperature != 1.0:
                logits = logits / temperature
            if top_k > 0:
                indices_to_remove = logits < torch.topk(logits, k=top_k)[0][-1]
                logits[indices_to_remove] = -torch.inf
            if top_p < 1.0:
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cum_probs > top_p
                sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
                sorted_indices_to_remove[0] = False
                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[indices_to_remove] = -torch.inf
            probs = F.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            if next_token.item() == eos_token_id:
                return
            tokens = next_token.unsqueeze(0)
            yield cast(int, next_token.item()), h


class Mamba2(nn.Module):
    def __init__(self, args: Mamba2Config, device: Device = None):
        super().__init__()
        self.args = args
        self.device = device

        d_in_proj = 2 * args.d_inner + 2 * args.d_state + args.nheads
        self.in_proj = nn.Linear(args.d_model, d_in_proj, bias=False, device=device)

        conv_dim = args.d_inner + 2 * args.d_state
        self.conv1d = nn.Conv1d(
            in_channels=conv_dim,
            out_channels=conv_dim,
            kernel_size=args.d_conv,
            groups=conv_dim,
            padding=args.d_conv - 1,
            device=device,
        )

        self.dt_bias = nn.Parameter(torch.empty(args.nheads, device=device))
        self.A_log = nn.Parameter(torch.empty(args.nheads, device=device))
        self.D = nn.Parameter(torch.empty(args.nheads, device=device))
        self.norm = RMSNorm(args.d_inner, device=device)
        self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=False, device=device)

    def forward(self, u: Tensor, h: Union[InferenceCache, None] = None):
        if h:
            return self.step(u, h)

        A = -torch.exp(self.A_log)  # (nheads,)
        zxbcdt = self.in_proj(u)  # (batch, seqlen, d_in_proj)
        z, xBC, dt = torch.split(
            zxbcdt,
            [
                self.args.d_inner,
                self.args.d_inner + 2 * self.args.d_state,
                self.args.nheads,
            ],
            dim=-1,
        )
        dt = F.softplus(dt + self.dt_bias)  # (batch, seqlen, nheads)

        conv_state = F.pad(
            rearrange(xBC, "b l d -> b d l"), (self.args.d_conv - u.shape[1], 0)
        )

        xBC = silu(
            self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, : u.shape[1], :]
        )  # (batch, seqlen, d_inner + 2 * d_state))
        x, B, C = torch.split(
            xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
        )
        x = rearrange(x, "b l (h p) -> b l h p", p=self.args.headdim)
        y, ssm_state = ssd(
            x * dt.unsqueeze(-1),
            A * dt,
            rearrange(B, "b l n -> b l 1 n"),
            rearrange(C, "b l n -> b l 1 n"),
            self.args.chunk_size,
            device=self.device,
        )
        y = y + x * self.D.unsqueeze(-1)
        y = rearrange(y, "b l h p -> b l (h p)")
        y = self.norm(y, z)
        y = self.out_proj(y)

        h = InferenceCache(conv_state, ssm_state)
        return y, h

    def step(self, u: Tensor, h: InferenceCache) -> Tuple[Tensor, InferenceCache]:
        assert u.shape[1] == 1, "Only one token can be decoded per inference step"

        zxbcdt = self.in_proj(u.squeeze(1))  # (batch, d_in_proj)
        z, xBC, dt = torch.split(
            zxbcdt,
            [
                self.args.d_inner,
                self.args.d_inner + 2 * self.args.d_state,
                self.args.nheads,
            ],
            dim=-1,
        )

        h.conv_state.copy_(torch.roll(h.conv_state, shifts=-1, dims=-1))
        h.conv_state[:, :, -1] = xBC
        xBC = torch.sum(
            h.conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1
        )
        xBC += self.conv1d.bias
        xBC = silu(xBC)

        x, B, C = torch.split(
            xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
        )
        A = -torch.exp(self.A_log)  # (nheads,)

        dt = F.softplus(dt + self.dt_bias)  # (batch, nheads)
        dA = torch.exp(dt * A)  # (batch, nheads)
        x = rearrange(x, "b (h p) -> b h p", p=self.args.headdim)
        dBx = torch.einsum("bh, bn, bhp -> bhpn", dt, B, x)
        h.ssm_state.copy_(h.ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
        y = torch.einsum("bhpn, bn -> bhp", h.ssm_state, C)
        y = y + rearrange(self.D, "h -> h 1") * x
        y = rearrange(y, "b h p -> b (h p)")
        y = self.norm(y, z)
        y = self.out_proj(y)

        return y.unsqueeze(1), h


def segsum(x: Tensor, device: Device = None) -> Tensor:
    T = x.size(-1)
    x = repeat(x, "... d -> ... d e", e=T)
    mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=-1)
    x = x.masked_fill(~mask, 0)
    x_segsum = torch.cumsum(x, dim=-2)
    mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=0)
    x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
    return x_segsum


def ssd(x, A, B, C, chunk_size, initial_states=None, device: Device = None):
    assert x.shape[1] % chunk_size == 0

    x, A, B, C = [
        rearrange(m, "b (c l) ... -> b c l ...", l=chunk_size) for m in (x, A, B, C)
    ]

    A = rearrange(A, "b c l h -> b h c l")
    A_cumsum = torch.cumsum(A, dim=-1)

    L = torch.exp(segsum(A, device=device))
    Y_diag = torch.einsum("bclhn, bcshn, bhcls, bcshp -> bclhp", C, B, L, x)

    decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
    states = torch.einsum("bclhn, bhcl, bclhp -> bchpn", B, decay_states, x)

    if initial_states is None:
        initial_states = torch.zeros_like(states[:, :1])
    states = torch.cat([initial_states, states], dim=1)
    decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0)), device=device))
    new_states = torch.einsum("bhzc, bchpn -> bzhpn", decay_chunk, states)
    states, final_state = new_states[:, :-1], new_states[:, -1]

    state_decay_out = torch.exp(A_cumsum)
    Y_off = torch.einsum("bclhn, bchpn, bhcl -> bclhp", C, states, state_decay_out)

    Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")

    return Y, final_state


class RMSNorm(nn.Module):
    def __init__(self, d: int, eps: float = 1e-5, device: Device = None):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(d, device=device))

    def forward(self, x, z=None):
        if z is not None:
            x = x * silu(z)
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight


def silu(x):
    return x * F.sigmoid(x)

在训练和测试代码中,我们也需要确保所有数据和模型在同一设备上。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Mamba2(config, device=device)
model.to(device)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值