二叉搜索树(BinarySearchTree): 用于实现快速的查找, 同时支持快速插入和删除。
BST要求: 在树种的任意一个节点, 其左子树的每个节点的值都要小于该节点的值, 其右子树的每个节点的值都要大于该节点的值。
#include <stdio.h>
#include <stdlib.h>
typedef struct tree_node {
int value;
struct tree_node *left;
struct tree_node *right;
} tree_node_t;
tree_node_t *create_tree_node(int value)
{
tree_node_t *new_node = (tree_node_t *)malloc(sizeof(tree_node_t));
if (new_node == NULL) {
printf("malloc for new tree node failed.\n");
return NULL;
}
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;
}
void binary_search_tree_insert(tree_node_t **node, int value)
{
if (*node == NULL) {
*node = create_tree_node(value);
} else if (value < (*node)->value) {
return binary_search_tree_insert(&(*node)->left, value);
} else if (value > (*node)->value) {
return binary_search_tree_insert(&(*node)->right, value);
} else {
printf("value: %d is alread exist in bst.\n", value);
}
}
void inorder_traversal(tree_node_t *root)
{
if (root == NULL) {
return;
}
inorder_traversal(root->left);
printf("%d ", root->value);
inorder_traversal(root->right);
}
int main()
{
tree_node_t *root = NULL;
int numbers[] = {50, 30, 70, 10, 40, 60, 90, 20, 80, 100, 0};
int size = sizeof(numbers) / sizeof(numbers[0]);
for (int i = 0; i < size; i++) {
binary_search_tree_insert(&root, numbers[i]);
}
printf("inorder traversal of binary search tree: \n");
inorder_traversal(root);
return 0;
}