AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

博客导读:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效​​​​​​​

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

目录

一.引言

二.一行代码完成Xinference本地部署

三.两行代码完成Xinference分布式部署

四.开箱即用webui

1.Launch Model

2.Running Models

2.1测试qwen1.5-chat

2.2模型存储路径

3.Register Model

4.Cluster Information

五.模型使用

六.总结 


一.引言

上一篇大语言模型推理服务框架—Ollama介绍了Ollama,Ollama以出色的设计一行命令完成推理框架部署,一行命令完成大模型部署,模型的下载不依赖梯子,速度非常快,大幅提升模型部署效率,同时,当有多卡GPU时,Ollama可以自动将模型分片到各个GPU上,博主使用V100显卡(单卡32G显存)部署llama3 70B(预计需要40G显存),自动完成了显存分配。

今天来介绍一下Xinference,与Ollama比较,Xinference自带Webui与用户交互更加友好,只需点一下所需要的模型,自动完成部署,同时,Xinference在启动时可以指定Modelscope社区下载模型,对于无法登陆抱抱脸的伙伴,可以大幅提升模型下载效率。

这里还是想说两句,大模型领域,美帝目前确实是领先的,我们能做的只能是努力追赶,但在追赶的过程中发现,好多优秀的大模型领域开源项目,都是默认配置hugging face的,一方面是下载模型时间甚至超过了熟悉项目本身,另一方面是压根连不上导致项目跑不起来,导致在这片土地上水土不服。当然对在这片热土上生存的企业及工程师,可能学习门槛的提升,也是一件好事,天热的技术护城河哈哈

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值