1.递归法
二叉树天然符合递归,因此二叉树的递归算法特别简单
在写递归算法时应该分为系统的三步走
1)首先明确递归时明确需要处理的数据返回类型
2)一定要明确何时停止递归,否则无限递归下去必然导致栈溢出
3)确定单层递归的处理逻辑
leetcode题目
144.二叉树的前序遍历
94.二叉树的中序遍历
145.二叉树的后续遍历
前序遍历
class Solution {
public:
void recursion(TreeNode* root,vector<int>& res)
{
if(root == NULL)//明确递归停止的条件
{
return;
}
res.push_back(root->val);//中节点
recursion(root->left,res);//左节点
recursion(rooy->right,res);//右节点
}
vector<int> preorderTraversal(TreeNode* root)
{
vector<int> temp;
recursion(root,temp);
return temp;
}
};
中序遍历和后序遍历仅仅需要改变单层递归的逻辑
中序遍历
class Solution {
public:
void recursion(TreeNode* root,vector<int>& res)
{
if(root == NULL)//明确递归停止的条件
{
return;
}
recursion(root->left,res);//左节点
res.push_back(root->val);//中节点
recursion(rooy->right,res);//右节点
}
vector<int> preorderTraversal(TreeNode* root)
{
vector<int> temp;
recursion(root,temp);
return temp;
}
};
后序遍历
class Solution {
public:
void recursion(TreeNode* root,vector<int>& res)
{
if(root == NULL)//明确递归停止的条件
{
return;
}
recursion(root->left,res);//左节点
recursion(rooy->right,res);//右节点
res.push_back(root->val);//中节点
}
vector<int> preorderTraversal(TreeNode* root)
{
vector<int> temp;
recursion(root,temp);
return temp;
}
};
2.迭代法
迭代法主要是手工使用栈来进行二叉树的遍历
前序遍历:
先将中节点入栈,取栈顶元素放入结果数组内,再进行出栈操作,再依次将右节点左节点入栈,只要栈内数据不为空便循环此操作,直到完成遍历
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root)
{
stack<TreeNode*>stack1;
vector<int> temp;
if(root == NULL)
{
return temp;
}
stack1.push(root);
while(!stack1.empty())
{
TreeNode* node = stack1.top();
stack1.pop();
temp.push_back(node->val);
if(node->right)
stack1.push(node->right);
if(node->left)
stack1.push(node->left);
}
return temp;
}
};
中序遍历:
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root)
{
stack<TreeNode*>stack1;
vector<int>result;
TreeNode* cur = root;
while(cur != NULL || !stack1.empty())
{
if(cur != NULL)
{
stack1.push(cur);
cur = cur -> left;
}
else
{
cur = stack1.top();
stack1.pop();
result.push_back(cur -> val);
cur = cur -> right;
}
}
return result;
}
};
后序遍历:
后序迭代遍历需要将先序稍微修改便可达到后序遍历的效果
先序遍历 ->(处理左右入栈顺序)中右左->(反转result数组)后序遍历(左右中)
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root)
{
stack<TreeNode*> stack1;
vector<int> result;
if(root == NULL)
{
return result;
}
stack1.push(root);
while(!stack1.empty())
{
TreeNode* node = stack1.top();
stack1.pop();
result.push_back(node->val);
if(node->left)
{
stack1.push(node->left);
}
if(node->right)
{
stack1.push(node->right);
}
}
//反转数组 双指针法
int pointer1 = 0;
int pointer2 = result.size()-1;
while(pointer1 <= pointer2)
{
int temp = result[pointer1];
result[pointer1] = result[pointer2];
result[pointer2] = temp;
pointer1++;
pointer2--;
}
return result;
}
};