AVL(平衡二叉树)

目录

1. AVL树的概念

2. AVL树节点定义

3. AVL树的插入

4. AVL树的旋转

4.1 左单旋

 4.2 右单旋

4.3 左右双旋 

 4.4 右左双旋

 5. AVL树的验证

 6. AVL树的查找

7. AVL树的性能


1. AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:

当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(超过1需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

AVL树可以是一棵空树,也可以是具有以下性质的一棵二叉搜索树:

  • 树的左右子树都是AVL树。
  • 树的左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)。


如果一棵二叉搜索树的高度是平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(logN),搜索时间复杂度也是O(logN)

注意: 这里所说的二叉搜索树的高度是平衡的是指,树中每个结点左右子树高度之差的绝对值不超过1(右子树高度减左子树的高度),因为只有满二叉树才能做到每个结点左右子树高度之差均为0。

2. AVL树节点定义

我们这里直接实现KV模型的AVL树(KV就是键值对),为了方便后续的操作,这里将AVL树中的结点定义为三叉链结构,并在每个结点当中引入平衡因子(右子树高度-左子树高度)。除此之外,还需编写一个构造新结点的构造函数,由于新构造结点的左右子树均为空树,于是将新构造结点的平衡因子初始设置为0即可。

template<class K, class V>
struct AVLTreeNode
{
	//存储键值对
	pair<K, V> _kv;
	//三叉链
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	//平衡因子(右子树高度-左子树高度)
	int _bf; // balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		,_bf(0)
	{}
};

3. AVL树的插入

AVL树插入结点时有以下三个步骤:

  1. 按照二叉搜索树的插入方法,找到待插入位置。
  2. 找到待插入位置后,将待插入结点插入到树中。
  3. 更新平衡因子,如果出现不平衡,则需要进行旋转。

因为AVL树本身就是一棵二叉搜索树,因此寻找结点的插入位置是非常简单的,按照二叉搜索树的插入规则:

  1. 待插入结点的key值比当前结点小就插入到该结点的左子树。
  2. 待插入结点的key值比当前结点大就插入到该结点的右子树。
  3. 待插入结点的key值与当前结点的key值相等就插入失败。

如此进行下去,直到找到与待插入结点的key值相同的结点判定为插入失败,或者最终走到空树位置进行结点插入。

与二叉搜索树插入结点不同的是,AVL树插入结点后需要更新树中结点的平衡因子,因为插入新结点后可能会影响树中某些结点的平衡因子。

由于一个结点的平衡因子是否需要更新,是取决于该结点的左右子树的高度是否发生了变化,因此插入一个结点后,该结点的祖先结点的平衡因子可能需要更新。

所以我们插入结点后需要倒着往上更新平衡因子,更新规则如下:

  1. 新增结点在parent的右边,parent的平衡因子++

  2. 新增结点在parent的左边,parent的平衡因子−−

每更新完一个结点的平衡因子后,都需要进行以下判断:

  • 如果parent的平衡因子等于-1或者1,表明还需要继续往上更新平衡因子。
  • 如果parent的平衡因子等于0,表明无需继续往上更新平衡因子了。
  • 如果parent的平衡因子等于-2或者2,表明此时以parent结点为根结点的子树已经不平衡了,需要进行旋转处理。

判断理由说明:

parent更新后的平衡因子 分析
-1或1

只有0经过−−/++操作后会变成-1/1,说明新结点的插入使得parent的左子树或右子树增高了,即改变了以parent为根结点的子树的高度,从而会影响parent的父结点的平衡因子,因此需要继续往上更新平衡因子。

0

只有-1/1经过++/−−操作后会变成0,说明新结点插入到了parent左右子树当中高度较矮的一棵子树,插入后使得parent左右子树的高度相等了,此操作并没有改变以parent为根结点的子树的高度,从而不会影响parent的父结点的平衡因子,因此无需继续往上更新平衡因子。

-2或2 此时parent结点的左右子树高度之差的绝对值已经超过1了,不满足AVL树的要求,因此需要进行旋转处理。
注意: parent的平衡因子在更新前只可能是-1/0/1(AVL树中每个结点的左右子树高度之差的绝对值不超过1)。


说明一下: 由于我们插入结点后需要倒着往上进行平衡因子的更新,所以我们将AVL树结点的结构设置为了三叉链结构,这样我们就可以通过父指针找到其父结点,进而对其平衡因子进行更新。

若是在更新平衡因子的过程当中,出现了平衡因子为-2/2的结点,这时我们需要对以该结点为根结点的树进行旋转处理,而旋转处理分为四种,在进行分类之前我们首先需要进行以下分析:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值