是什么
由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集
的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集。
Redis集群是一个提供在多个Redis节点间共享数据的程序集。Redis集群可以支持多个Master
能干嘛
- Redis集群支持多个Master,每个Master又可以挂载多个Slave
- 读写分离
- 支持数据的高可用
- 支持海量数据的读写存储操作
- 由于Cluster自带Sentinel的故障转移机制,内置了高可用的支持,无需再去使用哨兵功能
- 客户端与Redis的节点连接,不再需要连接集群中所有的节点,只需要任意连接集群中的一个可用节点即可
- 槽位slot负责分配到各个物理服务节点,由对应的集群来负责维护节点、插槽和数据之间的关系
集群算法-分片-槽位slot
官网出处
redis集群的槽位slot
Redis 集群投有使用一致性hash而是引入了哈希槽的概念。举个例子,比如当前集群有3个节点,那么:Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽
redis集群的分片
分片是什么 | 使用Redis集群时我们会将存储的数据分散到多台redis机器上,这称为分片。简言之,集群中的每个Redis实例都被认为是整个数据的一个分片。 |
如何找到给定key的分片 | 为了找到给定key的分片,我们对key进行CRC16(key)算法处理并通过对总分片数量取模。然后,使用确定性哈希函数,这意味着给定的key将多次始终映射到同一个分片,我们可以推断将来读取特定key的位置。 |
他两的优势
最大优势,方便扩缩容和数据分派查找。这种结构很容易添加或者删除节点,比如如果我想新添加个节点D,我需要从节点 A,B,C中得部分槽到D上,如果我想移除节点A,需要将A中的槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可.由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态。
slot槽位映射解决方法
- 哈希取余分区
- 2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
- 优点:简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。
- 缺点:原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。
- 2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
- 一致性哈希算法分区
- 提出一致性Hash解决方案。目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系
- 3大步骤
- 算法构建一致性哈希环
一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。
它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1, 0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。 - redis服务器IP节点映射
将集群中各个IP节点映射到环上的某一个位置。将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下: - key落到服务器的落键规则
当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
- 算法构建一致性哈希环
- 优点
- 一致性哈希算法的容错性:假设Node C宕机,可以看到此时对象A、B、D不会受到影响。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。
- 一致性哈希算法的扩展性:数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,
不会导致hash取余全部数据重新洗牌。
- 一致性哈希算法的容错性:假设Node C宕机,可以看到此时对象A、B、D不会受到影响。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。
- 缺点
- 一致性哈希算法的数据倾斜问题:一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器:
- 一致性哈希算法的数据倾斜问题:一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器:
- 哈希槽分区
- 为解决一致性哈希算法的数据倾斜问题提出哈希槽分区。
- 哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。
- 解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配
- 一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。集群会记录节点和槽的对应关系,解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取模,余数是几key就落入对应的槽里。HASH_SLOT = CRC16(key) mod 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。
- 哈希槽计算
- Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis先对key使用crc16算法算出一个结果然后用结果对16384求余数[ CRC16(key) % 16384],这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上
- Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis先对key使用crc16算法算出一个结果然后用结果对16384求余数[ CRC16(key) % 16384],这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上
- 为解决一致性哈希算法的数据倾斜问题提出哈希槽分区。
集群环境案例
3主3从redis集群配置
- 新建6个独立的redis实例服务
- IP:127.0.0.1+端口6381/端口6382
- IP:127.0.0.1+端口6383/端口6384
- IP:127.0.0.1+端口6385/端口6386
- IP:127.0.0.1+端口6381/端口6382
- 启动6台redis主机实例
/usr/local/bin/redis-server redisCluster6381.conf
- 通过redis-cli命令为6台机器构建集群关系
#--cluster-replicas 1 表示为每个master创建一个slave节点 redis-cli -a 111111 --cluster create --cluster-replicas 1 127.0.0.1:6381 127.0.0.1:6382 127.0.0.1:6383 127.0.0.1:6384 127.0.0.1:6385 127.0.0.1:6386
-
链接进入6381作为切入点,查看并检验集群状态
3主3从redis集群读写
-
对6381新增两个key,看看效果如何
-
为什么报错
-
每个master节点的槽位已经固定,相应的key要落到对应的槽位上,对应的槽位要落在相应master节点
-
-
如何解决
-
注意槽位的范围区间,需要路由到位。加入参数-c,优化路由
-
主从容错切换迁移案例
容错切换迁移
- 主6381和从机切换,先停止主机6381,对应的真实从机上位。
- 6381原来的主机回来了,不会上位
集群不保证数据一致性100%OK,一定会有数据丢失情况
Redis集群不保证强一致性,这意味着在特定的条件下,Redis集群可能会丢掉一些被系统收到的写入请求命令
手动故障转移 or 节点从属调整该如何处理
重新登陆6381机器执行CLUSTER FAILOVER
主从扩容案例
- 新建6387、6388两个服务实例配置文件+新建后启动(此时他们自己都是master)
- 将新增的6387节点(空槽号)作为master节点加入原集群
redis-cli --cluster add-node 127.0.0.1:6387 127.0.0.1:6381
-
第1次检查集群情况(6387无槽位)
redis-cli --cluster check 127.0.0.1:6381
-
重新分派槽号(reshard )
redis-cli --cluster reshard 127.0.0.1:6381
- 第2次检查集群情况(6387已分配槽位)
- 槽号分派说明:新分配成本太高,所以前3家各自匀出来一部分,从6381/6383/6385三个旧节点分别匀出1364个坑位给新节点6387
- 为主节点6387分配从节点6388
#redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID redis-cli --cluster add-node 127.0.0.1:6388 127.0.0.1:6387 --cluster-slave --cluster-master-id 4362c042ff3f4809bddb9b575f0aa8a00e0a53b5
-
第3次检查集群情况
主从缩容案例
- 第一次检查集群情况,先获得从节点6388的节点ID:c5006f35cbbb5485635692345af239b5e4116829(上文已有)
- 从集群中将4号从节点6388删除,第二次检查集群情况
redis-cli --cluster del-node 127.0.01:6388 c5006f35cbbb5485635692345af239b5e4116829
-
将6387的槽号清空,重新分配,本例将清出来的槽号都给6381,第三次检查集群情况
-
将6387删除,第四次检查集群情况
集群常用操作命令和CRC16算法分析
- 不在同一个slot槽位下的多键操作支持不好,通识占位符登场
- 不在同一个slot槽位下的键值无法使用mset、mget等多键操作。
可以通过{}来定义同一个组的概念,使key中{}内相同内容的键值对放到一个slot槽位去,对照下图类似k1k2k3都映射为x,自然槽位一样
- 不在同一个slot槽位下的键值无法使用mset、mget等多键操作。
- Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽。集群的每个节点负责一部分hash槽
- CRC16源码浅谈:cluster.c源码分析一下看看
- CRC16源码浅谈:cluster.c源码分析一下看看
- 常用命令
- 集群是否完整才能对外提供服务(默认YES,现在集群架构是3主3从的redis cluster由3个master平分16384个slot,每个master的小集群负责1/3的slot,对应一部分数据。cluster-require-full-coverage: 默认值 yes , 即需要集群完整性,方可对外提供服务 通常情况,如果这3个小集群中,任何一个(1主1从)挂了,你这个集群对外可提供的数据只有2/3了, 整个集群是不完整的, redis 默认在这种情况下,是不会对外提供服务的。如果你的诉求是,集群不完整的话也需要对外提供服务,需要将该参数设置为no ,这样的话你挂了的那个小集群是不行了,但是其他的小集群仍然可以对外提供服务。
):cluster-require-full-coverage - 查看槽是否占用:CLUSTER COUNTKEYSINSLOT 槽位数字编号(1,该槽位被占用;0,该槽位没占用)
- 该键应该存在哪个槽位上:CLUSTER KEYSLOT 键名称
- 集群是否完整才能对外提供服务(默认YES,现在集群架构是3主3从的redis cluster由3个master平分16384个slot,每个master的小集群负责1/3的slot,对应一部分数据。cluster-require-full-coverage: 默认值 yes , 即需要集群完整性,方可对外提供服务 通常情况,如果这3个小集群中,任何一个(1主1从)挂了,你这个集群对外可提供的数据只有2/3了, 整个集群是不完整的, redis 默认在这种情况下,是不会对外提供服务的。如果你的诉求是,集群不完整的话也需要对外提供服务,需要将该参数设置为no ,这样的话你挂了的那个小集群是不行了,但是其他的小集群仍然可以对外提供服务。