1.窗口函数
1.1窗口函数概念及基本的使用方法
窗口函数也称为OLAP函数。OLAP 是 OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。
为了便于理解,称之为 窗口函数。常规的SELECT语句都是对整张表进行查询,而窗口函数可以让我们有选择的去某一部分数据进行汇总、计算和排序。
窗口函数的通用形式:
<窗口函数> OVER ([ PARTITION BY <列名> ]
[ ORDER BY <排序用列名> ])
[ ]中的内容可以省略。
窗口函数最关键的是搞明白关键字 PARTITON BY 和 ORDER BY 的作用。
PARTITON BY 子句 可选参数,指示如何将查询行划分为组,类似于 GROUP BY 子句的分组功能,但是 PARTITION BY 子句并不具备 GROUP BY 子句的汇总功能,并不会改变原始表中记录的行数。
ORDER BY 子句 可选参数,指示如何对每个分区中的行进行排序,即决定窗口内,是按那种规则(字段)来排序的。
注意
虽然 PARTITON BY 子句 和 ORDER BY 子句 都是可选参数,但是两个参数不能同时没有(最少二选一)。不然, <窗口函数> OVER( ) 这种用法没用实际意义(窗口由所有查询行组成,窗口函数使用所有行计算结果)。
例子:
SELECT product_name
,product_type
,sale_price
,RANK() OVER (PARTITION BY product_type
ORDER BY sale_price) AS ranking
FROM product;
结果:
1.2 窗口函数种类
大致来说,窗口函数可以分为两类。
一是 将SUM、MAX、MIN等聚合函数用在窗口函数中
二是 RANK、DENSE_RANK等排序用的专用窗口函数
1.2.1专用窗口函数
RANK函数
计算排序时,如果存在相同位次的记录,则会跳过之后的位次。
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、4 位……
DENSE_RANK函数
同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、2 位……
ROW_NUMBER函数
赋予唯一的连续位次。
例)有 3 条记录排在第 1 位时:1 位、2 位、3 位、4 位
1.2.2 窗口函数的的应用 - 计算移动平均
聚合函数在窗口函数使用时,计算的是累积到当前行的所有的数据的聚合。 实际上,还可以指定更加详细的汇总范围。该汇总范围称为 框架 (frame)。
语法
<窗口函数> OVER (ORDER BY <排序用列名>
ROWS n PRECEDING )
<窗口函数> OVER (ORDER BY <排序用列名>
ROWS BETWEEN n PRECEDING AND n FOLLOWING)
PRECEDING(“之前”), 将框架指定为 “截止到之前 n 行”,加上自身行
FOLLOWING(“之后”), 将框架指定为 “截止到之后 n 行”,加上自身行
执行以下代码:
SELECT product_id
,product_name
,sale_price
,AVG(sale_price) OVER (ORDER BY product_id
ROWS 2 PRECEDING) AS moving_avg
FROM product;
结果
1.2.3窗口函数适用范围和注意事项
原则上,窗口函数只能在SELECT子句中使用。
窗口函数OVER 中的ORDER BY 子句并不会影响最终结果的排序。其只是用来决定窗口函数按何种顺序计算。
参考资料
https://linklearner.com/datawhale-homepage/#/learn/detail/70