Java进程线程
1.进程与线程
1.1 引入
现代操作系统(Windows,macOS,Linux)都可以执行多任务。多任务就是同时运行多个任务。
CPU执行代码都是一条一条顺序执行的,但是,即使是单核cpu,也可以同时运行多个任务。因为操作系统执行多任务实际上就是让CPU对多个任务轮流交替执行。
例如,假设我们有语文、数学、英语3门作业要做,每个作业需要30分钟。我们把这3门作业看成是3个任务,可以做1分钟语文作业,再做1分钟数学作业,再做1分钟英语作业:
这样轮流做下去,在某些人眼里看来,做作业的速度就非常快,看上去就像同时在做3门作业一样。
就像大家现在的状态一样,是不是为了期末考而进行多进程复习呢?
类似的,操作系统轮流让多个任务交替执行,例如,让浏览器执行0.001秒,让QQ执行0.001秒,再让音乐播放器执行0.001秒,在人看来,CPU就是在同时执行多个任务。
即使是多核CPU,因为通常任务的数量远远多于CPU的核数,所以任务也是交替执行的。
这样,你们可以打开任务管理器看看。
1.2 进程
在计算机中,我们把一个任务称为一个进程,浏览器就是一个进程,视频播放器是另一个进程,类似的,音乐播放器和Word都是进程。
某些进程内部还需要同时执行多个子任务。例如,我们在使用Word时,Word可以让我们一边打字,一边进行拼写检查,同时还可以在后台进行打印,我们把子任务称为线程。
总结:所以进程与线程的关系是:一个进程里面可以包含一个或者多个线程。
就像你在做作业一样,手写着字,大脑还在思考一样。
操作系统调度的最小任务单位其实不是进程,而是线程。
因为同一个应用程序,既可以有多个进程,也可以有多个线程,因此,实现多任务的方法,有以下几种:
多进程模式(每个进程只有一个线程)
多线程模式(一个进程有多个线程)
多进程+多线程模式(复杂度最高)
1.3 进程 vs 线程
进程和线程是包含关系,但是多任务既可以由多进程实现,也可以由单进程内的多线程实现,还可以混合多进程+多线程。
多进程的缺点在于:
- 创建进程比创建线程开销大,尤其是在Windows系统上;
- 进程间通信比线程间通信要慢,因为线程间通信就是读写同一个变量,速度很快。
而多进程的优点在于:
多进程稳定性比多线程高,因为在多进程的情况下,一个进程崩溃不会影响其他进程,而在多线程的情况下,任何一个线程崩溃会直接导致整个进程崩溃。
1.4 多线程
Java语言内置了多线程支持:一个Java程序实际上是一个JVM进程,JVM进程用一个主线程来执行main()
方法,在main()
方法内部,我们又可以启动多个线程。此外,JVM还有负责垃圾回收的其他工作线程等。
对于大多数Java程序来说,我们说多任务,实际上是说如何使用多线程实现多任务。
和单线程相比,多线程编程的特点在于:多线程经常需要读写共享数据,并且需要同步。例如,播放电影时,就必须由一个线程播放视频,另一个线程播放音频,两个线程需要协调运行,否则画面和声音就不同步。因此,多线程编程的复杂度高,调试更困难。
Java多线程编程的特点又在于:
- 多线程模型是Java程序最基本的并发模型;
- 后续读写网络、数据库、Web开发等都依赖Java多线程模型。
因此,必须掌握Java多线程编程才能继续深入学习其他内容。
2.线程创建
Java语言内置了多线程支持。当Java程序启动的时候,实际上是启动了一个JVM进程,然后,JVM启动主线程来执行main()
方法。在main()
方法中,我们又可以启动其他线程。
要创建一个新线程非常容易,我们需要实例化一个Thread
实例,然后调用它的start()
方法:
public class Main {
public static void main(String[] args) {
Thread t = new Thread();
t.start(); // 启动新线程
}
}
但是这个线程启动后实际上什么也不做就立刻结束了。我们希望新线程能执行指定的代码,有以下几种方法:
方法一:从Thread
派生一个自定义类,然后覆写run()
方法:
public class Main {
public static void main(String[] args) {
Thread t = new MyThread();
t.start(); // 启动新线程
}
}
class MyThread extends Thread {
@Override
public void run() {
System.out.println("start new thread!");
}
}
执行上述代码,注意到start()
方法会在内部自动调用实例的run()
方法。
方法二:创建Thread
实例时,传入一个Runnable
实例:
public class test {
public static void main(String[] args) {
Thread thread = new Thread(new MyThread());
thread.start();
}
}
class MyThread implements Runnable{
public void run(){
System.out.println("Thread is coming");
}
}
方法三:使用Java8出来的lambda表达式:
public class test {
public static void main(String[] args) {
Thread thread = new Thread(()->{
System.out.println("Thread is coming");
});
thread.start();
}
}
方法四:我们还可以使用匿名内部类进行访问:
public class test {
public static void main(String[] args) {
Thread thread = new Thread(){
public void run(){
System.out.println("Thread is coming");
}
};
thread.start();
}
}
有童鞋会问,使用线程执行的打印语句,和直接在main()
方法执行有区别吗?
区别大了去了。我们看以下代码:
public class Main {
public static void main(String[] args) {
System.out.println("main start...");
Thread t = new Thread() {
public void run() {
System.out.println("thread run...");
System.out.println("thread end.");
}
};
t.start();
System.out.println("main end...");
}
}
我们用蓝色表示主线程,也就是main
线程,main
线程执行的代码有4行,首先打印main start
,然后创建Thread
对象,紧接着调用start()
启动新线程。当start()
方法被调用时,JVM就创建了一个新线程,我们通过实例变量t
来表示这个新线程对象,并开始执行。
接着,main
线程继续执行打印main end
语句,而t
线程在main
线程执行的同时会并发执行,打印thread run
和thread end
语句。
当run()
方法结束时,新线程就结束了。而main()
方法结束时,主线程也结束了。
我们再来看线程的执行顺序:
main
线程肯定是先打印main start
,再打印main end
;t
线程肯定是先打印thread run
,再打印thread end
。
总结:线程主要是执行顺序不一样,首先是main函数线程执行,才会来到我们建立的新线程执行。
但是,除了可以肯定,main start
会先打印外,main end
打印在thread run
之前、thread end
之后或者之间,都无法确定。因为从t
线程开始运行以后,两个线程就开始同时运行了,并且由操作系统调度,程序本身无法确定线程的调度顺序。
要模拟并发执行的效果,我们可以在线程中调用Thread.sleep()
,强迫当前线程暂停一段时间:
sleep()
传入的参数是毫秒。调整暂停时间的大小,我们可以看到main
线程和t
线程执行的先后顺序。
要特别注意:直接调用Thread
实例的run()
方法是无效的:
public class Main {
public static void main(String[] args) {
Thread t = new MyThread();
t.run();
}
}
class MyThread extends Thread {
public void run() {
System.out.println("hello");
}
}
直接调用run()
方法,相当于调用了一个普通的Java方法,当前线程并没有任何改变,也不会启动新线程。上述代码实际上是在main()
方法内部又调用了run()
方法,打印hello
语句是在main
线程中执行的,没有任何新线程被创建。
public class test {
public static void main(String[] args) {
Thread thread = new Thread(()->{
try{
Thread.sleep(50);
System.out.println("Thread start");
}catch (InterruptedException e){
e.printStackTrace();
}
System.out.println("Thread end");
});
thread.start();
try{
Thread.sleep(25);
System.out.println("main start");
}catch(InterruptedException e){
e.printStackTrace();
}
System.out.println("main end");
}
}
线程的优先级
可以对线程设定优先级,设定优先级的方法是:
Thread.setPriority(int n) // 1~10, 默认值5
优先级高的线程被操作系统调度的优先级较高,操作系统对高优先级线程可能调度更频繁,但我们决不能通过设置优先级来确保高优先级的线程一定会先执行。
3.线程状态
在Java程序中,一个线程对象只能调用一次start()
方法启动新线程,并在新线程中执行run()
方法。一旦run()
方法执行完毕,线程就结束了。因此,Java线程的状态有以下几种:
- New:新创建的线程,尚未执行;
- Runnable:运行中的线程,正在执行
run()
方法的Java代码; - Blocked:运行中的线程,因为某些操作被阻塞而挂起;
- Waiting:运行中的线程,因为某些操作在等待中;
- Timed Waiting:运行中的线程,因为执行
sleep()
方法正在计时等待; - Terminated:线程已终止,因为
run()
方法执行完毕。
当线程启动后,它可以在Runnable
、Blocked
、Waiting
和Timed Waiting
这几个状态之间切换,直到最后变成Terminated
状态,线程终止。
线程终止的原因有:
- 线程正常终止:
run()
方法执行到return
语句返回; - 线程意外终止:
run()
方法因为未捕获的异常导致线程终止; - 对某个线程的
Thread
实例调用stop()
方法强制终止(强烈不推荐使用)。
一个线程还可以等待另一个线程直到其运行结束。例如,main
线程在启动t
线程后,可以通过t.join()
等待t
线程结束后再继续运行:
当main
线程对线程对象t
调用join()
方法时,主线程将等待变量t
表示的线程运行结束,即join
就是指等待该线程结束,然后才继续往下执行自身线程。所以,上述代码打印顺序可以肯定是main
线程先打印start
,t
线程再打印hello
,main
线程最后再打印end
。
public class test {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
System.out.println("Run");
});
System.out.println("start");
thread.start();
thread.join();
System.out.println("end");
}
}
由于线程执行方法是先执行主线程,再执行我们现在加入的线程。如果没有join,Run方法只有在主线程结束以后才执行的。
如果t
线程已经结束,对实例t
调用join()
会立刻返回。此外,join(long)
的重载方法也可以指定一个等待时间,超过等待时间后就不再继续等待。
4.中断线程
如果线程需要执行一个长时间任务,就可能需要能中断线程。中断线程就是其他线程给该线程发一个信号,该线程收到信号后结束执行run()
方法,使得自身线程能立刻结束运行。
中断一个线程非常简单,只需要在其他线程中对目标线程调用interrupt()
方法,目标线程需要反复检测自身状态是否是interrupted状态,如果是,就立刻结束运行。
public class Main {
public static void main(String[] args) throws InterruptedException {
Thread t = new MyThread();
t.start();
Thread.sleep(1); // 暂停1毫秒
t.interrupt(); // 中断t线程
t.join(); // 等待t线程结束
System.out.println("end");
}
}
class MyThread extends Thread {
public void run() {
int n = 0;
while (! isInterrupted()) {
n ++;
System.out.println(n + " hello!");
}
}
}
interrupt()
方法仅仅向t
线程发出了“中断请求”,至于t
线程是否能立刻响应,要看具体代码。而t
线程的while
循环会检测isInterrupted()
,所以上述代码能正确响应interrupt()
请求,使得自身立刻结束运行run()
方法。
如果线程处于等待状态,例如,t.join()
会让main
线程进入等待状态,此时,如果对main
线程调用interrupt()
,join()
方法会立刻抛出InterruptedException
,因此,目标线程只要捕获到join()
方法抛出的InterruptedException
,就说明有其他线程对其调用了interrupt()
方法,通常情况下该线程应该立刻结束运行。
我们又看一个代码:
package com.java.LOL;
public class test {
public static void main(String[] args) throws InterruptedException {
Thread t = new MyThread();
t.start();
Thread.sleep(100); // 暂停1毫秒
t.interrupt(); // 中断t线程
t.join(); // 等待t线程结束
System.out.println("end");
}
}
class MyThread extends Thread {
Thread t = new HelloThread();
public void run() {
t.start();
try{
t.join();
}catch (InterruptedException e){
System.out.println(e.getMessage());
}
t.interrupt();
}
}
class HelloThread extends Thread{
public void run(){
int n = 0;
while (! isInterrupted()) {
n++;
System.out.println("我错了!"+n);
try{
Thread.sleep(500);
}catch (InterruptedException e){
break;
}
}
}
}
这段代码主要是线程嵌套,我们在第一个线程里面又嵌套了第二个线程,但是代码量有点大,我们可以简化一下:
另一个常用的中断线程的方法是设置标志位。我们通常会用一个running
标志位来标识线程是否应该继续运行,在外部线程中,通过把HelloThread.running
置为false
,就可以让线程结束:
我们来看一段代码:
package com.java.LOL;
public class test {
public static void main(String[] args) throws InterruptedException {
MyThread thread = new MyThread();
thread.start();
Thread.sleep(50);
thread.running = false;
}
}
class MyThread extends Thread{
public volatile boolean running = true;
public void run(){
int n = 0;
while(running){
n++;
System.out.println("我错了!"+n);
}
System.out.println("end!");
}
}
注意到HelloThread
的标志位boolean running
是一个线程间共享的变量。线程间共享变量需要使用volatile
关键字标记,确保每个线程都能读取到更新后的变量值。
volatile关键字:是Java并发编程中比较重要的一个关键字。和synchronized不同,volatile是一个变量修饰符,只能用来修饰变量。无法修饰方法及代码块等。
volatile的用法比较简单,只需要在声明一个可能被多线程同时访问的变量时,使用volatile修饰就可以了。
其实就是线程共享了。
这会导致如果一个线程更新了某个变量,另一个线程读取的值可能还是更新前的。
因此,volatile
关键字的目的是告诉虚拟机:
- 每次访问变量时,总是获取主内存的最新值;
- 每次修改变量后,立刻回写到主内存。
volatile
关键字解决的是可见性问题:当一个线程修改了某个共享变量的值,其他线程能够立刻看到修改后的值。
可以增加线程进行值的稳定性。
5.线程守护
Java程序入口就是由JVM启动main
线程,main
线程又可以启动其他线程。当所有线程都运行结束时,JVM退出,进程结束。
如果有一个线程没有退出,JVM进程就不会退出。所以,必须保证所有线程都能及时结束。
但是我们有可能一不小心就进入了死循环。
class TimerThread extends Thread {
@Override
public void run() {
while (true) {
System.out.println(LocalTime.now());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
break;
}
}
}
}
如果这个线程不结束,JVM进程就无法结束。
我们要怎么结束这个线程呢?
我们就引入了一个守护线程的概念。
守护线程是指为其他线程服务的线程。在JVM中,所有非守护线程都执行完毕后,无论有没有守护线程,虚拟机都会自动退出。
因此,JVM退出时,不必关心守护线程是否已结束。
如何创建守护线程呢?方法和普通线程一样,只是在调用start()
方法前,调用setDaemon(true)
把该线程标记为守护线程:
Thread t = new MyThread();
t.setDaemon(true);
t.start();
在守护线程中,编写代码要注意:守护线程不能持有任何需要关闭的资源,例如打开文件等,因为虚拟机退出时,守护线程没有任何机会来关闭文件,这会导致数据丢失。
我们看一个代码:
package com.java.LOL;
import java.time.LocalTime;
public class test {
public static void main(String[] args) throws InterruptedException {
MyThread thread = new MyThread();
thread.setDaemon(true);
thread.run();
}
}
class MyThread extends Thread{
public void run(){
while(true){
System.out.println(LocalTime.now());
try{
Thread.sleep(1000);
}catch (InterruptedException e){
break;
}
}
}
}
总结一下:
守护线程是为其他线程服务的线程;
所有非守护线程都执行完毕后,虚拟机退出;
守护线程不能持有需要关闭的资源(如打开文件等)。
6.线程同步
当多个线程同时运行时,线程的调度由操作系统决定,程序本身无法决定。因此,任何一个线程都有可能在任何指令处被操作系统暂停,然后在某个时间段后继续执行。
这个时候,有个单线程模型下不存在的问题就来了:如果多个线程同时读写共享变量,会出现数据不一致的问题。
看一个代码:
public class Main {
public static void main(String[] args) throws Exception {
var add = new AddThread();
var dec = new DecThread();
add.start();
dec.start();
add.join();
dec.join();
System.out.println(Counter.count);
}
}
class Counter {
public static int count = 0;
}
class AddThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) { Counter.count += 1; }
}
}
class DecThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) { Counter.count -= 1; }
}
}
我们有可能希望值是0,但是会出现多种情况。
原因在于线程执行是jvm随机调用的一个过程,这是因为对变量进行读取和写入时,结果要正确,必须保证是原子操作。原子操作是指不能被中断的一个或一系列操作。
这说明多线程模型下,要保证逻辑正确,对共享变量进行读写时,必须保证一组指令以原子方式执行:即某一个线程执行时,其他线程必须等待
通过加锁和解锁的操作,就能保证3条指令总是在一个线程执行期间,不会有其他线程会进入此指令区间。
可见,保证一段代码的原子性就是通过加锁和解锁实现的。Java程序使用synchronized
关键字对一个对象进行加锁:
synchronized(lock) {
n = n + 1;
}
synchronized
保证了代码块在任意时刻最多只有一个线程能执行。我们把上面的代码用synchronized
改写如下:
package com.java.LOL;
public class test {
public static void main(String[] args) throws InterruptedException {
Thread1 thread1 = new Thread1();
Thread2 thread2 = new Thread2();
thread1.start();
thread2.start();
thread1.join();
thread2.join();
System.out.println(Counter.count);
}
}
class Counter{
public static final Object lock = new Object();
public static int count = 0;
}
class Thread1 extends Thread{
public void run(){
for (int i = 0; i < 10000; i++) {
synchronized (Counter.lock){
Counter.count++;
}
}
}
}
class Thread2 extends Thread{
public void run(){
for (int i = 0; i < 10000; i++) {
synchronized (Counter.lock){
Counter.count--;
}
}
}
}
结果就对了。
synchronized(Counter.lock) { // 获取锁
...
} // 释放锁
它表示用Counter.lock
实例作为锁,两个线程在执行各自的synchronized(Counter.lock) { ... }
代码块时,必须先获得锁,才能进入代码块进行。执行结束后,在synchronized
语句块结束会自动释放锁。这样一来,对Counter.count
变量进行读写就不可能同时进行。上述代码无论运行多少次,最终结果都是0。
这个就相当于一个锁,就是依次进行相关线程。
使用synchronized
解决了多线程同步访问共享变量的正确性问题。但是,它的缺点是带来了性能下降。因为synchronized
代码块无法并发执行。此外,加锁和解锁需要消耗一定的时间,所以,synchronized
会降低程序的执行效率。
方法:
我们在上述代码上面进行改进:
public class Counter {
private int count = 0;
public void add(int n) {
synchronized(this) {
count += n;
}
}
public void dec(int n) {
synchronized(this) {
count -= n;
}
}
public int get() {
return count;
}
}
这样一来,线程调用add()
、dec()
方法时,它不必关心同步逻辑,因为synchronized
代码块在add()
、dec()
方法内部。并且,我们注意到,synchronized
锁住的对象是this
,即当前实例,这又使得创建多个Counter
实例的时候,它们之间互不影响,可以并发执行:
var c1 = Counter();
var c2 = Counter();
// 对c1进行操作的线程:
new Thread(() -> {
c1.add();
}).start();
new Thread(() -> {
c1.dec();
}).start();
// 对c2进行操作的线程:
new Thread(() -> {
c2.add();
}).start();
new Thread(() -> {
c2.dec();
}).start();
如果一个类被设计为允许多线程正确访问,我们就说这个类就是“线程安全”的(thread-safe),上面的Counter
类就是线程安全的。Java标准库的java.lang.StringBuffer
也是线程安全的。
还有一些不变类,例如String
,Integer
,LocalDate
,它们的所有成员变量都是final
,多线程同时访问时只能读不能写,这些不变类也是线程安全的。
最后,类似Math
这些只提供静态方法,没有成员变量的类,也是线程安全的。
除了上述几种少数情况,大部分类,例如ArrayList
,都是非线程安全的类,我们不能在多线程中修改它们。
我们再回过头来看看counter代码:
当我们锁住的是this
实例时,实际上可以用synchronized
修饰这个方法。下面两种写法是等价的:
public void add(int n) {
synchronized(this) { // 锁住this
count += n;
} // 解锁
}
public synchronized void add(int n) { // 锁住this
count += n;
} // 解锁
因此,用synchronized
修饰的方法就是同步方法,它表示整个方法都必须用this
实例加锁。
对于static
方法,是没有this
实例的,因为static
方法是针对类而不是实例。但是我们注意到任何一个类都有一个由JVM自动创建的Class
实例,因此,对static
方法添加synchronized
,锁住的是该类的Class
实例。
public class Counter {
public static void test(int n) {
synchronized(Counter.class) {
...
}
}
}
7.死锁
一个线程在获取一个锁以后还可以再获得另外一把锁。
public void add(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value += m;
synchronized(lockB) { // 获得lockB的锁
this.another += m;
} // 释放lockB的锁
} // 释放lockA的锁
}
public void dec(int m) {
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
} // 释放lockA的锁
} // 释放lockB的锁
}
在获取多个锁的时候,不同线程获取多个不同对象的锁可能导致死锁。对于上述代码,线程1和线程2如果分别执行add()
和dec()
方法时:
- 线程1:进入
add()
,获得lockA
; - 线程2:进入
dec()
,获得lockB
。
随后:
- 线程1:准备获得
lockB
,失败,等待中; - 线程2:准备获得
lockA
,失败,等待中。
此时,两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。
总结:死锁就是在线程里面加入了不同对象的锁以后就导致程序无法运行的锁。
死锁发生后,没有任何机制能解除死锁,只能强制结束JVM进程。
因此,在编写多线程应用时,要特别注意防止死锁。因为死锁一旦形成,就只能强制结束进程。
那么我们应该如何避免死锁呢?答案是:线程获取锁的顺序要一致。即严格按照先获取lockA
,再获取lockB
的顺序,改写dec()
方法如下:
public void dec(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
} // 释放lockB的锁
} // 释放lockA的锁
}
8.wait和notify
在Java程序中,synchronized
解决了多线程竞争的问题。例如,对于一个任务管理器,多个线程同时往队列中添加任务,可以用synchronized
加锁:
class TaskQueue {
Queue<String> queue = new LinkedList<>();
public synchronized void addTask(String s) {
this.queue.add(s);
}
public synchronized String getTask() {
while (queue.isEmpty()) {
}
return queue.remove();
}
}
上述代码看上去没有问题:getTask()
内部先判断队列是否为空,如果为空,就循环等待,直到另一个线程往队列中放入了一个任务,while()
循环退出,就可以返回队列的元素了。
但实际上while()
循环永远不会退出。因为线程在执行while()
循环时,已经在getTask()
入口获取了this
锁,其他线程根本无法调用addTask()
,因为addTask()
执行条件也是获取this
锁。
对于上述TaskQueue,我们先改造getTask()方法,在条件不满足时,线程进入等待状态:
public synchronized String getTask() {
while (queue.isEmpty()) {
this.wait();
}
return queue.remove();
}
当一个线程执行到getTask()
方法内部的while
循环时,它必定已经获取到了this
锁,此时,线程执行while
条件判断,如果条件成立(队列为空),线程将执行this.wait()
,进入等待状态。
这里的关键是:wait()
方法必须在当前获取的锁对象上调用,这里获取的是this
锁,因此调用this.wait()
。
调用wait()
方法后,线程进入等待状态,wait()
方法不会返回,直到将来某个时刻,线程从等待状态被其他线程唤醒后,wait()
方法才会返回,然后,继续执行下一条语句。
现在我们面临第二个问题:如何让等待的线程被重新唤醒,然后从wait()
方法返回?答案是在相同的锁对象上调用notify()
方法。我们修改addTask()
如下:
public synchronized void addTask(String s) {
this.queue.add(s);
this.notify(); // 唤醒在this锁等待的线程
}
使用notifyAll()
将唤醒所有当前正在this
锁等待的线程,而notify()
只会唤醒其中一个(具体哪个依赖操作系统,有一定的随机性)。
9.Lock
我们在使用线程里面也许还有不安全,我们还可以加入方法:Lock接口,我们使用ReentrantLock。
public class Counter {
private final Lock lock = new ReentrantLock();
private int count;
public void add(int n) {
lock.lock();
try {
count += n;
} finally {
lock.unlock();
}
}
}
因为synchronized
是Java语言层面提供的语法,所以我们不需要考虑异常,而ReentrantLock
是Java代码实现的锁,我们就必须先获取锁,然后在finally
中正确释放锁。
使用ReentrantLock
比直接使用synchronized
更安全,可以替代synchronized
进行线程同步。
答案是使用Condition
对象来实现wait
和notify
的功能。
我们仍然以TaskQueue
为例,把前面用synchronized
实现的功能通过ReentrantLock
和Condition
来实现:
class TaskQueue {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private Queue<String> queue = new LinkedList<>();
public void addTask(String s) {
lock.lock();
try {
queue.add(s);
condition.signalAll();
} finally {
lock.unlock();
}
}
public String getTask() {
lock.lock();
try {
while (queue.isEmpty()) {
condition.await();
}
return queue.remove();
} finally {
lock.unlock();
}
}
}
Condition
提供的await()
、signal()
、signalAll()
原理和synchronized
锁对象的wait()
、notify()
、notifyAll()
是一致的,并且其行为也是一样的:
await()
会释放当前锁,进入等待状态;signal()
会唤醒某个等待线程;signalAll()
会唤醒所有等待线程;- 唤醒线程从
await()
返回后需要重新获得锁。
此外,和tryLock()
类似,await()
可以在等待指定时间后,如果还没有被其他线程通过signal()
或signalAll()
唤醒,可以自己醒来:
Condition
可以替代wait
和notify
;
Condition
对象必须从Lock
对象获取。
这个是Java5以后有的。
10.读写锁
使用ReadWriteLock
可以解决线程读写问题,因为前面问题导致了一个东西:只能读不能写,它保证:
- 只允许一个线程写入(其他线程既不能写入也不能读取);
- 没有写入时,多个线程允许同时读(提高性能)。
用ReadWriteLock
实现这个功能十分容易。我们需要创建一个ReadWriteLock
实例,然后分别获取读锁和写锁:
public class Counter {
private final ReadWriteLock rwlock = new ReentrantReadWriteLock();
private final Lock rlock = rwlock.readLock();
private final Lock wlock = rwlock.writeLock();
private int[] counts = new int[10];
public void inc(int index) {
wlock.lock(); // 加写锁
try {
counts[index] += 1;
} finally {
wlock.unlock(); // 释放写锁
}
}
public int[] get() {
rlock.lock(); // 加读锁
try {
return Arrays.copyOf(counts, counts.length);
} finally {
rlock.unlock(); // 释放读锁
}
}
}
把读写操作分别用读锁和写锁来加锁,在读取时,多个线程可以同时获得读锁,这样就大大提高了并发读的执行效率。
11.stampedLock
要进一步提升并发执行效率,Java 8引入了新的读写锁:StampedLock
。
StampedLock
和ReadWriteLock
相比,改进之处在于:读的过程中也允许获取写锁后写入!这样一来,我们读的数据就可能不一致,所以,需要一点额外的代码来判断读的过程中是否有写入,这种读锁是一种乐观锁。
代码实例:
public class Point {
private final StampedLock stampedLock = new StampedLock();
private double x;
private double y;
public void move(double deltaX, double deltaY) {
long stamp = stampedLock.writeLock(); // 获取写锁
try {
x += deltaX;
y += deltaY;
} finally {
stampedLock.unlockWrite(stamp); // 释放写锁
}
}
public double distanceFromOrigin() {
long stamp = stampedLock.tryOptimisticRead(); // 获得一个乐观读锁
// 注意下面两行代码不是原子操作
// 假设x,y = (100,200)
double currentX = x;
// 此处已读取到x=100,但x,y可能被写线程修改为(300,400)
double currentY = y;
// 此处已读取到y,如果没有写入,读取是正确的(100,200)
// 如果有写入,读取是错误的(100,400)
if (!stampedLock.validate(stamp)) { // 检查乐观读锁后是否有其他写锁发生
stamp = stampedLock.readLock(); // 获取一个悲观读锁
try {
currentX = x;
currentY = y;
} finally {
stampedLock.unlockRead(stamp); // 释放悲观读锁
}
}
return Math.sqrt(currentX * currentX + currentY * currentY);
}
}
注意到首先我们通过tryOptimisticRead()
获取一个乐观读锁,并返回版本号。
如果在读取过程中有写入,版本号会发生变化,验证将失败。在失败的时候,我们再通过获取悲观读锁再次读取。由于写入的概率不高,程序在绝大部分情况下可以通过乐观读锁获取数据,极少数情况下使用悲观读锁获取数据。
至于Concurrent集合,大家就看看官网:https://www.liaoxuefeng.com/wiki/1252599548343744/1306581060812834
线程池:https://www.liaoxuefeng.com/wiki/1252599548343744/1306581130018849