Five aspects of researches about automatic drive perception by Waymo

本文汇总了多项关于3D对象检测的研究成果,包括Pointpillar的快速点云编码器、PV-RCNN++的点-体素特征抽象、RSN的范围稀疏网络以及3D-Man的多帧注意力网络。这些工作通过创新的方法提升了激光雷达输入质量,利用多帧信息进行互补融合,并实现了高效准确的检测。此外,还介绍了SurfelGAN生成逼真的传感器数据以助力自动驾驶研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Main stream network model:

  • Pointpillar: Fast Encoders for Object Detection from Point Clouds by Lang et al.

paper:https://arxiv.org/pdf/1812.05784.pdf
  • PV-RCNN++:Point-Voxel Feature Set Abstraction for 3D Object Detection by Shi et al.

paper:https://arxiv.org/pdf/2102.00463.pdf

Five aspects of researches about automatic drive perception by Waymo.

SPG:Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation

  • targeted & light-weight model for improving LIDAR input quality against occlusions and poor weathers
  • Effectiveness verified by applying to popular and SOTA 3D detectors.
  • complete the 3D shape before Detection
paper:https://openaccess.thecvf.com/content/ICCV2021/papers/Xu_SPG_Unsupervised_Domain_Adaptation_for_3D_Object_Detection_via_Semantic_ICCV_2021_paper.pdf

3D-man:3D Multi-frame Attention Network for Object Detection

  • Complementary information from multiple frames
  • learned attention to fuse multi-frame
  • learn to fuse complementary information from multi-frame data via attention layers
paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Yang_3D-MAN_3D_Multi-Frame_Attention_Network_for_Object_Detection_CVPR_2021_paper.pdf

RSN: Range Sparse Net for Efficient,Accurate LIDAR 3D Object Detection

  • targeted feature selection via segmentation
  • Efficient backbone based on sparse conv
paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Sun_RSN_Range_Sparse_Net_for_Efficient_Accurate_LiDAR_3D_Object_CVPR_2021_paper.pdf

Labeling Automation: Offboard 3D Object Detection from Point Cloud Sequences

  • leverage structured information in the 3D space and temporal sequences.
  • Quality on-par with human labelers
paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Qi_Offboard_3D_Object_Detection_From_Point_Cloud_Sequences_CVPR_2021_paper.pdf

SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving

  • Generating realistic camera images for novel SDC and dynamic object poses
  • Scalable solution based on pre-collected LIDAR and camera data
paper:https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_SurfelGAN_Synthesizing_Realistic_Sensor_Data_for_Autonomous_Driving_CVPR_2020_paper.pdf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值