逆序对 - 归并排序 -剑指Offer 51
题目
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。
case1:
输入: [7,5,6,4]
输出: 5
用递归的归并排序解决:
class Solution {
public:
int length;
long long ans=0;
int reversePairs(vector<int>& nums) {
if(nums.size()==0){
return 0;
}
this->length=nums.size();
MergeSort1(nums,0,length-1);
return ans;
}
void Merge(vector<int>& nums,int first1,int last1,int last2){
int *temp=new int[length];
int i=first1,j=last1+1,k=first1;
while(i<=last1&&j<=last2){
if(nums[i]<=nums[j])temp[k++]=nums[i++];
else {
temp[k++]=nums[j++];
ans+=last1-i+1;
}
}
while(i<=last1)
temp[k++]=nums[i++];
while(j<=last2)
temp[k++]=nums[j++];
for(i=first1;i<=last2;i++)
nums[i]=temp[i];
delete[] temp;
}
void MergeSort1(vector<int>& nums,int first,int last){
if(first==last)return;
else{
int mid=(first+last)/2;
MergeSort1(nums,first,mid);
MergeSort1(nums,mid+1,last);
Merge(nums,first,mid,last);
}
}
};
用迭代的归并排序:
class Solution {
public:
int length;
long long ans=0;
int reversePairs(vector<int>& nums) {
if(nums.size()==0){
return 0;
}
this->length=nums.size();
MergeSort2(nums);
return ans;
}
void Merge(vector<int>& nums,int first1,int last1,int last2){
int *temp=new int[length];
int i=first1,j=last1+1,k=first1;
while(i<=last1&&j<=last2){
if(nums[i]<=nums[j])temp[k++]=nums[i++];
else {
temp[k++]=nums[j++];
ans+=last1-i+1;
}
}
while(i<=last1)
temp[k++]=nums[i++];
while(j<=last2)
temp[k++]=nums[j++];
for(i=first1;i<=last2;i++)
nums[i]=temp[i];
delete[] temp;
}
void MergePass(vector<int>& nums,int h){
int i=0;
while(i+2*h<=length){
Merge(nums,i,i+h-1,i+2*h-1);
i=i+2*h;
}
if(i+h<length)
Merge(nums,i,i+h-1,length-1);
}
void MergeSort2(vector<int>& nums){
int h=1;
while(h<length){
MergePass(nums,h);
h=2*h;
}
}
};
AC代码,性能更优:
class Solution {
public:
int reversePairs(vector<int>& nums) {
if(nums.size()==0)
return 0;
vector<int> tmp(nums.size());
return mergeSort(0,nums.size()-1,nums,tmp);
}
int mergeSort(int l,int r,vector<int>& nums,vector<int>& tmp){
if (l==r) return 0;
int m=(l+r)/2;
int res=mergeSort(l,m,nums,tmp)+mergeSort(m+1,r,nums,tmp);
int i=l,j=m+1;
for(int k=l;k<=r;k++)
tmp[k]=nums[k];
for(int k=l;k<=r;k++){
if(i==m+1)
nums[k]=tmp[j++];
else if(j==r+1||tmp[i]<=tmp[j])
nums[k]=tmp[i++];
else {
nums[k]=tmp[j++];
res+=m-i+1;
}
}
return res;
}
};
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)