简单微分方程
- 分离变量型
- 换元法解微分方程:
1.(xy−y2)dx−(x2−2xy)dy=0(xy-y^2)dx-(x^2-2xy)dy=0(xy−y2)dx−(x2−2xy)dy=0
解: 设u=x/yu=x/yu=x/y,
则有y′=u−xu′,y'=u-xu',y′=u−xu′,
化简得(1−2u)duu2=dxx\frac{(1-2u)du}{u^2}=\frac{dx}{x}u2(1−2u)du=xdx,
- ax+by+ca1x+b1y+c1=dydx,(a,b)=m(a1,b1).\frac{ax+by+c}{a_1x+b_1y+c_1}=\frac{dy}{dx},(a,b)=m(a_1,b_1).a1x+b1y+c1ax+by+c=dxdy,(a,b)=m(a1,b1).
解: 左式=ax+by+cm(ax+by+c)+c1−mc\frac{ax+by+c}{m(ax+by+c)+c_1-mc}m(ax+by+c)+c1−mcax+by+c
设u=ax+by+cu=ax+by+cu=ax+by+c,
左式:umu+d:\frac{u}{mu+d}:mu+du - ax+by+ca1x+b1y+c1=dydx\frac{ax+by+c}{a_1x+b_1y+c_1}=\frac{dy}{dx}a1x+b1y+c1ax+by+c=dxdy
将{ax+by+c=0,a1x+b−1y+c1=0 \begin{cases} ax+by+c=0,&\\ a_1x+b-1y+c_1=0 \end{cases} {ax+by+c=0,a1x+b−1y+c1=0
的解使得x=X+x0,y=Y+y0x=X+x_0,y=Y+y_0x=X+x0,y=Y+y0
将X,YX,YX,Y带入原式,
有dYdX=aX+bY+(ax0+by0+c0)a1X+b1Y+(a1x0+b1y0+c1)\frac{dY}{dX}=\frac{aX+bY+(ax_0+by_0+c_0)}{a_1X+b_1Y+(a_1x_0+b_1y_0+c_1)}dXdY=a1X+b1Y+(a1x0+b1y0+c1)aX+bY+(ax0+by0+c0)
- 常数变易法:将原式化为y′+P(x)y=Q(x)y'+P(x)y=Q(x)y′+P(x)y=Q(x)的形式
公式:
y=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C)y=e^{-\int{P(x)}dx}(\int{Q(x)e^{\int{P(x)}dx}dx+C)} y=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C)
eg:1.
y2dx+(xy−1)dy=0注:此时x与y地位平等,故可以x为未知函数进行化简原式可化为:dxdy+1y∗x=1y2最终解得:x=1y(lny+C)补上解y=0y^2dx+(xy-1)dy=0\\ 注:此时x与y地位平等,故可以x为未知函数进行化简\\ 原式可化为: \frac{dx}{dy}+\frac{1}{y}*x=\frac{1}{y^2}\\ 最终解得:\\ x=\frac{1}{y}(lny+C)\\ 补上解 y=0 y2dx+(xy−1)dy=0注:此时x与y地位平等,故可以x为未知函数进行化简原式可化为:dydx+y1∗x=y21最终解得:x=y1(lny+C)补上解y=0
2.(y4−3x2)y′+xy=0方法:可利用不定积分换元法,将dx转换为其他微分原式可化为dx2dy−6x2∗1y=−2y3再用伯努利方程求解即可. (y^4-3x^2)y'+xy=0\\ 方法:可利用不定积分换元法,将dx转换为其他微分\\ 原式可化为\\ \frac{dx^2}{dy}-6x^2*\frac{1}{y}=-2y^3\\ 再用伯努利方程求解即可. (y4−3x2)y′+xy=0方法:可利用不定积分换元法,将dx转换为其他微分原式可化为dydx2−6x2∗y1=−2y3再用伯努利方程求解即可.
注意y与x的平等关系,以及补解 - 伯努利方程:将y′+P(x)y=Q(x)ymy'+P(x)y=Q(x)y^my′+P(x)y=Q(x)ym化为y−m∗y′+P(x)y1−m=Q(x)y^{-m}*y'+P(x)y^{1-m}=Q(x)y−m∗y′+P(x)y1−m=Q(x)的形式,再使u=y1−mu=y^{1-m}u=y1−m,代入原式可得到dudx+(1−m)uP(x)=(1−m)Q(x)\frac{du}{dx}+(1-m)uP(x)=(1-m)Q(x)dxdu+(1−m)uP(x)=(1−m)Q(x)