B. GCD Length(思维)——Educational Codeforces Round 107 (Rated for Div. 2)

You are given three integers a, b and c.

Find two positive integers x and y (x>0, y>0) such that:

the decimal representation of x without leading zeroes consists of a digits;
the decimal representation of y without leading zeroes consists of b digits;
the decimal representation of gcd(x,y) without leading zeroes consists of c digits.
gcd(x,y) denotes the greatest common divisor (GCD) of integers x and y.

Output x and y. If there are multiple answers, output any of them.

Input
The first line contains a single integer t (1≤t≤285) — the number of testcases.

Each of the next t lines contains three integers a, b and c (1≤a,b≤9, 1≤c≤min(a,b)) — the required lengths of the numbers.

It can be shown that the answer exists for all testcases under the given constraints.

Additional constraint on the input: all testcases are different.

Output
For each testcase print two positive integers — x and y (x>0, y>0) such that

the decimal representation of x without leading zeroes consists of a digits;
the decimal representation of y without leading zeroes consists of b digits;
the decimal representation of gcd(x,y) without leading zeroes consists of c digits.
Example
inputCopy
4
2 3 1
2 2 2
6 6 2
1 1 1
outputCopy
11 492
13 26
140133 160776
1 1
Note
In the example:

gcd(11,492)=1
gcd(13,26)=13
gcd(140133,160776)=21
gcd(1,1)=1

题目大意:给出三个数(x,y, z)的位数a,b,c。求出任意一组满足max(gcd(x,y)) = z的数。
在刚拿到这道题时,想的是先用欧拉筛晒出质数,然后根据条件反推结果。但是无法得到大于10^9的质数(内存不够)。
答案给出的解法是构造,找到一个独特的z,然后在找到互素的x/z和y/z。于是令z为10^(c - 1),x为11…1z,y为10…0z

#include <iostream>
#include <string>
using namespace std;

int main()
{
	int a, b, c, t;
	cin >> t;
	while (t--)
	{
		string sa, sb;
		cin >> a >> b >> c;
		int i;
		for (i = 0; i < a - (c - 1); i++) sa.push_back('1');
		for (; i < a; i++) sa.push_back('0');

		sb.push_back('1');
		for (int j = 1; j < b; j++) sb.push_back('0');
		cout << sa << ' ' << sb << endl;
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值