- 问题
最近对问题要求在包含有n个点的集合S中,找出距离最近的两个点。设 p1(x1,y1),p2(x2,y2),……,pn(xn,yn)是平面的n个点。
2解析
1.按x坐标排列的n(n>=2)个点的集合S={(x1,y1),(x2,y2),…,(xn,yn)},
2.如果n2,则返回(x1,y1)和(x2,y2)之间的距离,算法结束;
3.如果n3,则返回(x1,y1)、(x2,y2)和(x3,y3)之间的最小距离,算法结束;
4.划分:m==S中各点x坐标的中位数;
5.d1 = 计算{(x1,y1),…,(xm,ym)}的最近对距离;d2 = 计算{(xm,ym),…,(xn,yn)}的最近对距离;
6.d = min(d1,d2);
7.依次考察集合S中的点p(x,y),如果(x<=xm 并且x>=xm-d),则将点p放入集合P1中;如果(x>xm 并且x<=xm+d),则将点p放入集合P2中;
8.将集合P1和P2按y坐标升序排列;
9.对集合P1和P2中的每个点p(x,y),在y坐标区间[y,y+d]内最对取出6个候选点,计算与点p的最近距离d3;
10.返回min{d,d3};
3设计
double closeset(int low, int high)
{
if (low == high)
return MAX;
if (low + 1 == high)
return dist(p[low], p[high]);
int mid = (low + high)>>1;
double ans = min(closeset(low, mid), closeset(mid+1, high));
int i, j, c = 0;
for (i = low; i <= high; i++)
{
if (p[mid].x - ans <= p[i].x && p[i].x <= p[mid].x + ans)
a[c++] = i;
}
sort(a, a + c, cmpy);
for(i = 0; i < c; i++)
{
int k = i+7 > c ? c : i+7;
for (j = i+1; j < k; j++)
{
if (p[a[j]].y - p[a[i]].y > ans)
break;
ans = min(dist(p[a[i]], p[a[j]]), ans);
}
}
return ans;
}
5源码
#include<iostream>
#include<math.h>
#include<fstream>
#include<algorithm>
using namespace std;
#define MAX 0x3f3f3f3f
#define M 99999
struct point {
double x, y;
}p[M];
int a[M];// 保存排序的索引
int cmpx(const point& a, const point& b) //排序升序
{
return a.x < b.x;
}
int cmpy(int &a, int &b) //排序升序
{
return p[a].y < p[b].y;
}
inline double min(double a, double b) //返回两个值中较小的
{
return a < b ? a : b;
}
inline double dist(const point& a, const point& b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
double closeset(int low, int high)
{
if (low == high)
return MAX;
if (low + 1 == high)
return dist(p[low], p[high]);
int mid = (low + high)>>1;
double ans = min(closeset(low, mid), closeset(mid+1, high));
int i, j, c = 0;
for (i = low; i <= high; i++)
{
if (p[mid].x - ans <= p[i].x && p[i].x <= p[mid].x + ans)
a[c++] = i;
}
sort(a, a + c, cmpy);
for(i = 0; i < c; i++)
{
int k = i+7 > c ? c : i+7;
for (j = i+1; j < k; j++)
{
if (p[a[j]].y - p[a[i]].y > ans)
break;
ans = min(dist(p[a[i]], p[a[j]]), ans);
}
}
return ans;
}
int main()
{
double totaltime;
int n;
double dmin;
ifstream read_in;
read_in.open("input.txt");
read_in >> n;
for(int i=0;i<n;i++)
{
cout<<"p"<<i+1<<":";
read_in>>p[i].x>>p[i].y;
cout<<p[i].x<<" "<<p[i].y<<endl;
}
sort(p,p+n,cmpx); //按照x轴排序
dmin=closeset(0, n-1);
cout<<"最近的距离是:"<<dmin<<endl;
return 0;
}
/*
input
15
5 10
9 1
10 12
10 19
13 15
15 19
16 20
19 9
24 0
24 12
31 32
32 24
38 29
40 56
45 23
*/