#include <stdio.h>
// 假设的模数 N 和 R = 2^k
#define N 17
#define R 32
#define K 5 // R = 2^K
// 计算 a 的模 N 逆元(这里只适用于 N 为奇数)
unsigned int mod_inverse(unsigned int a, unsigned int m) {
unsigned int m0 = m, t, q;
int x0 = 0, x1 = 1;
if (m == 1)
return 0;
while (a > 1) {
q = a / m;
t = m;
m = a % m, a = t;
t = x0;
x0 = x1 - q * x0;
x1 = t;
}
if (x1 < 0)
x1 += m0;
return x1;
}
// 蒙哥马利约简
unsigned int montgomery_reduce(unsigned long long a) {
unsigned int u = (unsigned int)a * (R - mod_inverse(N, R)) % R;
unsigned int res = (a + u * N) >> K;
if (res >= N) res -= N;
return res;
}
// 蒙哥马利乘法
unsigned int montgomery_multiply(unsigned int a, unsigned int b) {
unsigned long long t = (unsigned long long)a * b;
return montgomery_reduce(t);
}
int main() {
unsigned int a = 5; // 示例数值
unsigned int b = 6; // 示例数值
// 转换到蒙哥马利域
a = a*R;
b = b*R;
// 蒙哥马利乘法
unsigned int c = montgomery_multiply(a, b);
// 转换回常规数值
c = montgomery_reduce(c);
printf("Result: %u\n", c);
return 0;
}
蒙哥马利算法(Montgomery Algorithm)
于 2024-01-22 21:13:43 首次发布