原文链接:https://arxiv.org/abs/2406.10600
简介:本文引入自适应子采样方法和定制网络,利用稀疏性模式发掘雷达信号中的全局和局部依赖性。本文的子采样模块选择 RD谱中在下游任务贡献最大 像素 的子集。为提高子采样数据的特征提取,本文引入图神经网络,设计两分支主干分别提取局部和全局信息,并使用注意力融合模块组合两分支特征。实验表明,本文的SparseRadNet能在RADIal数据集上达到SotA分割和检测性能。
1. 引言
现有的基于原始雷达数据(如RAD张量、RD谱或ADC数据等)的方法多使用CNN,但大量像素仅含有噪声,CNN处理不够高效。
本文为每帧数据动态生成采样掩膜,对原始雷达数据进行子采样。同时,对子采样数据使用GNN,将子采样像素视为节点,根据特征空间中的距离建立动态边。此外,使用稀疏CNN作为主干的另一分支,与GNN分别提取局部和全局特征。
3. SparseRadNet结构
如图所示,SparseRadNet分为4部分:深度雷达子采样模块(从RD谱中选择重要部分);带有注意力融合模块的两分支主干(捕捉邻域信息);距离-角度解码器(将RD转化为RA视图);两个输出头(用于目标检测和空空间分割)。
3.1 深度雷达子采样模块
本文提出深度雷达子采样(DRS)模块,以同时保留原始雷达数据的稀疏性和丰富的信息。
RD谱为 C H × W × N R x \mathbb C^{H\times W\times N_{Rx}} CH×W×NRx的复值向量,其中 N R x N_{Rx} NRx为接收天线的数量,复值被分为实部和虚部,作为本文方法的输入 x ∈ R H × W × 2 N R x x\in\mathbb R^{H\times W\times 2N_{Rx}} x∈RH×W×2NRx。令 A ∈ { 0 , 1 } H × W A\in\{0,1\}^{H\times W} A∈{ 0,1}H×W为\二值采样掩膜,可通过 y h , w , c = A h , w ⋅ x h , w , c y_{h,w,c}=A_{h,w}\cdot x_{h,w,c} yh,w,c=Ah,w⋅xh,w,c得 y ∈ R H × W × 2 N R x y\in\mathbb R^{H\times W\times 2N_{Rx}} y∈RH×W×2NRx。预定义的选择元素数 M ≪ N = H × W M\ll N=H\times W M≪N=H×W。本文使用CNN(参数为 θ \theta θ)处理输入,并将输出视为未归一化的logit Z θ ( x ) ∈ R H × W Z_{\theta}(x)\in\mathbb R^{H\times W} Zθ(x)∈RH×W。
本文将问题视为从分类分布的采样。使用Gumbel-Softmax方法直接从未归一化的logit中采样 M M M个像素,而非先将 Z θ ( x ) Z_{\theta}(x) Zθ(x)通过softmax达到概率分布 A θ ( x ) A_\theta