【论文笔记13】Differentially Private Optimal Transport: Application to Domain Adaptation, IJCAI 2019

本文介绍了将差分隐私应用于最优传输(DPOT)来保护源数据隐私,进而解决域适应(DPDA)问题。研究在VisDA、Office-Home和Office-Caltech数据集上的实验,与非私有最优传输和半监督方法进行对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列传送

我的论文笔记频道

【Active Learning】
【论文笔记01】Learning Loss for Active Learning, CVPR 2019
【论文笔记02】Active Learning For Convolutional Neural Networks: A Core-Set Approch, ICLR 2018
【论文笔记03】Variational Adversarial Active Learning, ICCV 2019
【论文笔记04】Ranked Batch-Mode Active Learning,ICCV 2016

【Transfer Learning】
【论文笔记05】Active Transfer Learning, IEEE T CIRC SYST VID 2020
【论文笔记06】Domain-Adversarial Training of Neural Networks, JMLR 2016
【论文笔记10】A unified framework of active transfer learning for cross-system recommendation, AI 2017
【论文笔记14】Transfer Learning via Minimizing the Performance Gap Between Domains, NIPS 2019

【Differential Privacy】
【论文笔记07】A Survey on Differentially Private Machine Learning, IEEE CIM 2020
【论文笔记09】Differentially Private Hypothesis Transfer Learning, ECML&PKDD 2018
【论文笔记11】 Deep Domain Adaptation With Differential Privay, IEEE TIFS 2020
【论文笔记12】Differential privacy based on importance weighting, Mach Learn 2013
【论文笔记13】Differentially Private Optimal Transport: Application to Domain Adaptation, IJCAI 2019

【Model inversion attack】
【论文笔记08】Model inversion attacks that exploit confidence information and basic countermeasures, SIGSAC 2015

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值