Pytorch Note40 词嵌入(word embedding)

本文介绍了词嵌入的概念,用于解决自然语言处理中单词编码的问题。词嵌入通过向量表示单词,使词性相近的词在向量空间中的夹角小,从而表示它们的相似性。在PyTorch中实现词嵌入非常简单,可以通过nn.Embedding创建词嵌入矩阵。接着讲解了Skip-Gram模型,该模型通过预测词的上下文来训练词嵌入,用于构建词向量。最后,文章描述了模型结构和训练样本的生成方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch Note40 词嵌入(word embedding)


全部笔记的汇总贴: Pytorch Note 快乐星球

词嵌入

前面讲了循环神经网络做简单的图像分类问题和飞机流量时序预测,但是现在循环神经网络最火热的应用是自然语言处理,下面我们介绍一下自然语言处理中如果运用循环神经网络,首先我们介绍一下第一个概念,词嵌入。

对于图像分类问题,我们可以使用 one-hot 的类型去编码,比如一共有 5 类,那么属于第二类就可以用 (0, 1, 0, 0, 0) 去表示,对于分类问题,这样当然忒别简单,但是在自然语言处理中,因为单词的数目过多,这样做就行不通了,比如有 10000 个不同的词,那么使用 one-hot 不仅效率低,同时还没有办法表达出单词的特点,这个时候就引入了词嵌入去表达每一个单词。

词向量简单来说就是用一个向量去表示一个词语,但是这个向量并不是随机的,因为这样并没有任何意义,所以我们需要对每个词有一个特定的向量去表示他们,而有一些词的词性是相近的,比如”(love)喜欢”和”(like)爱”,对于这种词性相近的词,我们需要他们的向量表示也能够相近,如何去度量和定义向量之间的相近呢?非常简单,就是使用两个向量的夹角,夹角越小,越相近,这样就有了一个完备的定义。

我们举一个例子,下面有 4 段话

  1. The

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值