离线day-day11
01-Flume–软件概述
- Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的软件。
- 引水渠
- source
- channel
- sink
02- Flume–运行机制&运行结构图
[外链图片转存失败(img-H1Aovbdm-1564197326019)(assert/flume1.png)]
-
Flume系统中核心的角色是agent,agent本身是一个Java进程,一般运行在日志收集节点。
-
Source:采集源,用于跟数据源对接,以获取数据;
-
Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据;
-
Channel:agent内部的数据传输通道,用于从source将数据传递到sink;
-
在整个数据的传输的过程中,流动的是event,它是Flume内部数据传输的最基本单元。
- 一个完整的event包括:event headers、event body、event信息,其中event信息就是flume收集到的日记记录。
-
03- Flume–安装部署&简单入门
-
上传安装包到数据源所在节点上
-
然后解压 tar -zxvf apache-flume-1.8.0-bin.tar.gz
-
然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME
-
先用一个最简单的例子来测试一下程序环境是否正常
- vi netcat-logger.conf
# 定义这个agent中各组件的名字 a1.sources = r1 a1.sinks = k1 a1.channels = c1 # 描述和配置source组件:r1 a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # 描述和配置sink组件:k1 a1.sinks.k1.type = logger # 描述和配置channel组件,此处使用是内存缓存的方式 a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # 描述和配置source channel sink之间的连接关系 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
-
启动agent去采集数据
bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console
-c conf 指定flume自身的配置文件所在目录
-f conf/netcat-logger.con 指定我们所描述的采集方案
-n a1 指定我们这个agent的名字
04-Flume–案例–监控采集文件夹变化(sqoopdir、HDFS)
-
采集需求:服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去;
-
l 采集源,即source——监控文件目录 : spooldir
l 下沉目标,即sink——HDFS文件系统 : hdfs sink
l source和sink之间的传递通道——channel,可用file channel 也可以用内存channel
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source ##注意:不能往监控目中重复丢同名文件 a1.sources.r1.type = spooldir a1.sources.r1.spoolDir = /root/logs a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/ a1.sinks.k1.hdfs.filePrefix = events- a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute a1.sinks.k1.hdfs.rollInterval = 3 a1.sinks.k1.hdfs.rollSize = 20 a1.sinks.k1.hdfs.rollCount = 5 a1.sinks.k1.hdfs.batchSize = 1 a1.sinks.k1.hdfs.useLocalTimeStamp = true #生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本 a1.sinks.k1.hdfs.fileType = DataStream # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
capacity:默认该通道中最大的可以存储的event数量
trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量
05-Flume–案例–监控采集文件夹变化–执行演示&注意事项
启动命令:
bin/flume-ng agent -c ./conf -f ./conf/spool-hdfs.conf -n a1 -Dflume.root.logger=INFO,console
测试: 往/home/hadoop/flumeSpool放文件(mv ././xxxFile /home/hadoop/flumeSpool),但是不要在里面生成文件
06-Flume–案例–监控文件变化(exec source)
-
采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs
-
l 采集源,即source——监控文件内容更新 : exec ‘tail -F file’
l 下沉目标,即sink——HDFS文件系统 : hdfs sink
l Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /root/logs/test.log a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path = /flume/tailout/%y-%m-%d/%H%M/ a1.sinks.k1.hdfs.filePrefix = events- a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute a1.sinks.k1.hdfs.rollInterval = 3 a1.sinks.k1.hdfs.rollSize = 20 a1.sinks.k1.hdfs.rollCount = 5 a1.sinks.k1.hdfs.batchSize = 1 a1.sinks.k1.hdfs.useLocalTimeStamp = true #生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本 a1.sinks.k1.hdfs.fileType = DataStream # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
-
-
启动命令
启动命令: bin/flume-ng agent -c conf -f conf/tail-hdfs.conf -n a1 -Dflume.root.logger=INFO,console
07-Flume–高阶–负载均衡功能
-
负载均衡是用于解决一台机器(一个进程)无法解决所有请求而产生的一种算法。Load balancing Sink Processor能够实现load balance功能[外链图片转存失败(img-4SxPfjqI-1564197326020)(assert/flume2.png)]
-
vi exec-avro.conf
#agent1 name agent1.channels = c1 agent1.sources = r1 agent1.sinks = k1 k2 #set gruop agent1.sinkgroups = g1 #set channel agent1.channels.c1.type = memory agent1.channels.c1.capacity = 1000 agent1.channels.c1.transactionCapacity = 100 agent1.sources.r1.channels = c1 agent1.sources.r1.type = exec agent1.sources.r1.command = tail -F /root/logs3/123.log # set sink1 agent1.sinks.k1.channel = c1 agent1.sinks.k1.type = avro agent1.sinks.k1.hostname = node02 agent1.sinks.k1.port = 52020 # set sink2 agent1.sinks.k2.channel = c1 agent1.sinks.k2.type = avro agent1.sinks.k2.hostname = node03 agent1.sinks.k2.port = 52020 #set sink group agent1.sinkgroups.g1.sinks = k1 k2 #set failover agent1.sinkgroups.g1.processor.type = load_balance agent1.sinkgroups.g1.processor.backoff = true agent1.sinkgroups.g1.processor.selector = round_robin agent1.sinkgroups.g1.processor.selector.maxTimeOut=10000
-
启动命令
bin/flume-ng agent -c conf -f conf/exec-avro.conf -n agent1 -Dflume.root.logger=INFO,console
-
vi avro-logger.conf (在node02上)
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = node02 a1.sources.r1.port = 52020 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
-
vi avro-logger.conf(在node03上)
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = node03 a1.sources.r1.port = 52020 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
bin/flume-ng agent -c conf -f conf/avro-logger.conf -n a1 -Dflume.root.logger=INFO,console
08-Flume–高阶–容错(故障转移)功能
-
Failover Sink Processor能够实现failover功能,具体流程类似load balance,但是内部处理机制与load balance完全不同。
-
vi exec-avro.conf
#agent1 name agent1.channels = c1 agent1.sources = r1 agent1.sinks = k1 k2 #set gruop agent1.sinkgroups = g1 #set channel agent1.channels.c1.type = memory agent1.channels.c1.capacity = 1000 agent1.channels.c1.transactionCapacity = 100 agent1.sources.r1.channels = c1 agent1.sources.r1.type = exec agent1.sources.r1.command = tail -F /root/logs/456.log # set sink1 agent1.sinks.k1.channel = c1 agent1.sinks.k1.type = avro agent1.sinks.k1.hostname = node02 agent1.sinks.k1.port = 52020 # set sink2 agent1.sinks.k2.channel = c1 agent1.sinks.k2.type = avro agent1.sinks.k2.hostname = node03 agent1.sinks.k2.port = 52020 #set sink group agent1.sinkgroups.g1.sinks = k1 k2 #set failover agent1.sinkgroups.g1.processor.type = failover agent1.sinkgroups.g1.processor.priority.k1 = 10 agent1.sinkgroups.g1.processor.priority.k2 = 1 agent1.sinkgroups.g1.processor.maxpenalty = 10000
bin/flume-ng agent -c conf -f conf/exec-avro.conf -n agent1 -Dflume.root.logger=INFO,console
-
vi avro-logger.conf (在node02 )
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = node02 a1.sources.r1.port = 52020 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
-
vi avro-logger.conf (在node03)
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = node03 a1.sources.r1.port = 52020 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
-
bin/flume-ng agent -c conf -f conf/avro-logger.conf -n a1 -Dflume.root.logger=INFO,console
09-Flume–静态拦截器–案例业务需求描述
-
A、B两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log 。现在要求:把A、B 机器中的access.log、nginx.log、web.log 采集汇总到C机器上然后统一收集到hdfs中。但是在hdfs中要求的目录为:
/source/logs/access/20160101/**
/source/logs/nginx/20160101/**
/source/logs/web/20160101/**
10-Flume–静态拦截器–功能实现
-
vi exec_source_avro_sink.conf
#Name the components on this agent a1.sources = r1 r2 r3 a1.sinks = k1 a1.channels = c1 #Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /root/logs/access.log a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = type a1.sources.r1.interceptors.i1.value = access a1.sources.r2.type = exec a1.sources.r2.command = tail -F /root/logs/nginx.log a1.sources.r2.interceptors = i2 a1.sources.r2.interceptors.i2.type = static a1.sources.r2.interceptors.i2.key = type a1.sources.r2.interceptors.i2.value = nginx a1.sources.r3.type = exec a1.sources.r3.command = tail -F /root/logs/web.log a1.sources.r3.interceptors = i3 a1.sources.r3.interceptors.i3.type = static a1.sources.r3.interceptors.i3.key = type a1.sources.r3.interceptors.i3.value = web #Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = node02 a1.sinks.k1.port = 41414 #Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 2000 a1.channels.c1.transactionCapacity = 100 #Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sources.r2.channels = c1 a1.sources.r3.channels = c1 a1.sinks.k1.channel = c1
-
vi avro_source_hdfs_sink.conf
#定义agent名, source、channel、sink的名称 a1.sources = r1 a1.sinks = k1 a1.channels = c1 #定义source a1.sources.r1.type = avro a1.sources.r1.bind = node02 a1.sources.r1.port =41414 #添加时间拦截器 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder #定义channels a1.channels.c1.type = memory a1.channels.c1.capacity = 20000 a1.channels.c1.transactionCapacity = 10000 #定义sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path=hdfs://node01:50070/source/logs/%{type}/%Y%m%d a1.sinks.k1.hdfs.filePrefix =events a1.sinks.k1.hdfs.fileType = DataStream a1.sinks.k1.hdfs.writeFormat = Text #时间类型 a1.sinks.k1.hdfs.useLocalTimeStamp = true #生成的文件不按条数生成 a1.sinks.k1.hdfs.rollCount = 0 #生成的文件不按时间生成 a1.sinks.k1.hdfs.rollInterval = 20 #生成的文件按大小生成 a1.sinks.k1.hdfs.rollSize = 10485760 #批量写入hdfs的个数 a1.sinks.k1.hdfs.batchSize = 20 #flume操作hdfs的线程数(包括新建,写入等) a1.sinks.k1.hdfs.threadsPoolSize=10 #操作hdfs超时时间 a1.sinks.k1.hdfs.callTimeout=30000 #组装source、channel、sink a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
11-Flume–自定义拦截器–需求描述
- 根据实际业务的需求,为了更好的满足数据在应用层的处理,通过自定义Flume拦截器,过滤掉不需要的字段,并对指定字段加密处理,将源数据进行预处理。减少了数据的传输量,降低了存储的开销。
12-Flume–自定义拦截器–代码逻辑梳理
-
pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cn.itcast.cloud</groupId> <artifactId>example-flume-intercepter</artifactId> <version>1.0-SNAPSHOT</version> <dependencies> <dependency> <groupId>org.apache.flume</groupId> <artifactId>flume-ng-sdk</artifactId> <version>1.8.0</version> </dependency> <dependency> <groupId>org.apache.flume</groupId> <artifactId>flume-ng-core</artifactId> <version>1.8.0</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.0</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> <!-- <verbal>true</verbal>--> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>3.1.1</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainClass></mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins> </build> </project>
-
java代码
package cn.itcast.interceptor; import com.google.common.base.Charsets; import org.apache.flume.Context; import org.apache.flume.Event; import org.apache.flume.interceptor.Interceptor; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; import static cn.itcast.interceptor.CustomParameterInterceptor.Constants.*; /** * Created by itcast */ public class CustomParameterInterceptor implements Interceptor{ /** The field_separator.指明每一行字段的分隔符 */ private final String fields_separator; /** The indexs.通过分隔符分割后,指明需要那列的字段 下标*/ private final String indexs; /** The indexs_separator. 多个下标的分隔符*/ private final String indexs_separator; /** The encrypted_field_index. 需要加密的字段下标*/ private final String encrypted_field_index; /** * */ public CustomParameterInterceptor( String fields_separator, String indexs, String indexs_separator,String encrypted_field_index) { String f = fields_separator.trim(); String i = indexs_separator.trim(); this.indexs = indexs; this.encrypted_field_index=encrypted_field_index.trim(); if (!f.equals("")) { f = UnicodeToString(f); } this.fields_separator =f; if (!i.equals("")) { i = UnicodeToString(i); } this.indexs_separator = i; }
/*
*
* \t 制表符 ('\u0009')
*
*/
public static String UnicodeToString(String str) {
Pattern pattern = Pattern.compile("(\\\\u(\\p{XDigit}{4}))");
Matcher matcher = pattern.matcher(str);
char ch;
while (matcher.find()) {
ch = (char) Integer.parseInt(matcher.group(2), 16);
str = str.replace(matcher.group(1), ch + "");
}
return str;
}
/*
* @see org.apache.flume.interceptor.Interceptor#intercept(org.apache.flume.Event)
*/
public Event intercept(Event event) {
if (event == null) {
return null;
}
try {
String line = new String(event.getBody(), Charsets.UTF_8);
String[] fields_spilts = line.split(fields_separator);
String[] indexs_split = indexs.split(indexs_separator);
String newLine="";
for (int i = 0; i < indexs_split.length; i++) {
int parseInt = Integer.parseInt(indexs_split[i]);
//对加密字段进行加密
if(!"".equals(encrypted_field_index)&&encrypted_field_index.equals(indexs_split[i])){
newLine+=StringUtils.GetMD5Code(fields_spilts[parseInt]);
}else{
newLine+=fields_spilts[parseInt];
}
if(i!=indexs_split.length-1){
newLine+=fields_separator;
}
}
event.setBody(newLine.getBytes(Charsets.UTF_8));
return event;
} catch (Exception e) {
return event;
}
}
/*
* @see org.apache.flume.interceptor.Interceptor#intercept(java.util.List)
*/
public List<Event> intercept(List<Event> events) {
List<Event> out = new ArrayList<Event>();
for (Event event : events) {
Event outEvent = intercept(event);
if (outEvent != null) {
out.add(outEvent);
}
}
return out;
}
/*
* @see org.apache.flume.interceptor.Interceptor#initialize()
*/
public void initialize() {
// TODO Auto-generated method stub
}
/*
* @see org.apache.flume.interceptor.Interceptor#close()
*/
public void close() {
// TODO Auto-generated method stub
}
public static class Builder implements Interceptor.Builder {
/** The fields_separator.指明每一行字段的分隔符 */
private String fields_separator;
/** The indexs.通过分隔符分割后,指明需要那列的字段 下标*/
private String indexs;
/** The indexs_separator. 多个下标下标的分隔符*/
private String indexs_separator;
/** The encrypted_field. 需要加密的字段下标*/
private String encrypted_field_index;
/*
* @see org.apache.flume.conf.Configurable#configure(org.apache.flume.Context)
*/
public void configure(Context context) {
fields_separator = context.getString(FIELD_SEPARATOR, DEFAULT_FIELD_SEPARATOR);
indexs = context.getString(INDEXS, DEFAULT_INDEXS);
indexs_separator = context.getString(INDEXS_SEPARATOR, DEFAULT_INDEXS_SEPARATOR);
encrypted_field_index= context.getString(ENCRYPTED_FIELD_INDEX, DEFAULT_ENCRYPTED_FIELD_INDEX);
}
/*
* @see org.apache.flume.interceptor.Interceptor.Builder#build()
*/
public Interceptor build() {
return new CustomParameterInterceptor(fields_separator, indexs, indexs_separator,encrypted_field_index);
}
}
/**
* The Class Constants.
*
*/
public static class Constants {
/** The Constant FIELD_SEPARATOR. */
public static final String FIELD_SEPARATOR = "fields_separator";
/** The Constant DEFAULT_FIELD_SEPARATOR. */
public static final String DEFAULT_FIELD_SEPARATOR =" ";
/** The Constant INDEXS. */
public static final String INDEXS = "indexs";
/** The Constant DEFAULT_INDEXS. */
public static final String DEFAULT_INDEXS = "0";
/** The Constant INDEXS_SEPARATOR. */
public static final String INDEXS_SEPARATOR = "indexs_separator";
/** The Constant DEFAULT_INDEXS_SEPARATOR. */
public static final String DEFAULT_INDEXS_SEPARATOR = ",";
/** The Constant ENCRYPTED_FIELD_INDEX. */
public static final String ENCRYPTED_FIELD_INDEX = "encrypted_field_index";
/** The Constant DEFAUL_TENCRYPTED_FIELD_INDEX. */
public static final String DEFAULT_ENCRYPTED_FIELD_INDEX = "";
/** The Constant PROCESSTIME. */
public static final String PROCESSTIME = "processTime";
/** The Constant PROCESSTIME. */
public static final String DEFAULT_PROCESSTIME = "a";
}
/**
* 字符串md5加密
*/
public static class StringUtils {
// 全局数组
private final static String[] strDigits = { "0", "1", "2", "3", "4", "5",
"6", "7", "8", "9", "a", "b", "c", "d", "e", "f" };
// 返回形式为数字跟字符串
private static String byteToArrayString(byte bByte) {
int iRet = bByte;
// System.out.println("iRet="+iRet);
if (iRet < 0) {
iRet += 256;
}
int iD1 = iRet / 16;
int iD2 = iRet % 16;
return strDigits[iD1] + strDigits[iD2];
}
// 返回形式只为数字
private static String byteToNum(byte bByte) {
int iRet = bByte;
System.out.println("iRet1=" + iRet);
if (iRet < 0) {
iRet += 256;
}
return String.valueOf(iRet);
}
// 转换字节数组为16进制字串
private static String byteToString(byte[] bByte) {
StringBuffer sBuffer = new StringBuffer();
for (int i = 0; i < bByte.length; i++) {
sBuffer.append(byteToArrayString(bByte[i]));
}
return sBuffer.toString();
}
public static String GetMD5Code(String strObj) {
String resultString = null;
try {
resultString = new String(strObj);
MessageDigest md = MessageDigest.getInstance("MD5");
// md.digest() 该函数返回值为存放哈希值结果的byte数组
resultString = byteToString(md.digest(strObj.getBytes()));
} catch (NoSuchAlgorithmException ex) {
ex.printStackTrace();
}
return resultString;
}
}
}
13-Flume–自定义拦截器–功能实现
14-Flume–自定义source(扩展)–需求、代码逻辑梳理
- Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。官方提供的source类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些source。
- 如:实时监控MySQL,从MySQL中获取数据传输到HDFS或者其他存储框架,所以此时需要我们自己实现MySQLSource。
15-Flume–自定义source(扩展)–功能测试实现
16-Flume–自定义sink(扩展)–数据写入本地
- 同自定义source类似,对于某些sink如果没有我们想要的,我们也可以自定义sink实现将数据保存到我们想要的地方去,例如kafka,或者mysql,或者文件等等都可以
- 需求:从网络端口当中发送数据,自定义sink,使用sink从网络端口接收数据,然后将数据保存到本地文件当中去。