【轴承RUL预测代码】基于TCN、TCN和多头注意力(TCN和Transformer的encoder结合)、Transformer模型的轴承RUL预测代码(精华)

原始特征集(①原始振动信号序列数据②FFT预处理序列数据③STFT预处理序列数据④HHT边际谱序列数据)

这里以PHM2012轴承特征数据集为例,采样频率为25.6kHz,采样持续时间是0.1s,采样点数是2560

原始特征集类型
振动数据2560维度
FFT预处理数据1280维度
STFT预处理数据1281维度

后续还可以将上述的原始特征集数据作为深度自编网络的输入,进行无监督学习,提取深度特征数据

自编码模型深度特征维度可以任意设置(均为TensorFlow2.3版本)
AE(普通自编码)AE的基础网络可以是MLP、LSTM、CNN、TCN
DAE(降噪自编码)DAE的基础网络可以是MLP、LSTM、CNN、TCN
SAE(堆栈自编码)SAE的基础网络可以是MLP、LSTM、CNN、TCN
SDAE(堆栈降噪自编码)SDAE的基础网络可以是MLP、LSTM、CNN、TCN

模型(①TCN模型②TCN和多头注意力(TCN和Transformer的encoder结合)③Transformer模型)

两个版本的模型都有:

模型框架
TCN模型PyTorch1.9、TensorFlow2.3
TCN和多头注意力PyTorch1.9、TensorFlow2.3
TransformerPyTorch1.9、TensorFlow2.3
评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风筝不是风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值