引言
今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题。
现象
此前的错误代码是
input_cpu = torch.ones((1, 2, 160, 160))
target_cpu =torch.ones((1, 2, 160, 160))
target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda()
model.set_input_2(input_gpu, target_gpu)
model.eval()
model.forward()
应该改为
input_cpu = torch.ones((1, 2, 160, 160))
target_cpu =torch.ones((1, 2, 160, 160))
target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda()
model.set_input_2(input_gpu, target_gpu)
# 先forward再eval
model.forward()
model.eval()
当时有个疑虑,为什么要在forward后面再加eval(),查了下相关资料,主要是在BN层以及Dropout的问题。当使用eval()时,模型会自动固定BN层以及Dropout,选取训练好的值,否则则会取平均,可能导致生成的图片颜色失真。