SEED和SEED-IV数据集介绍-学习笔记

一、SEED三分类数据

1.实验刺激

20个被试,15个电影片段(包含三种情绪),每个片段四分钟

2.被试(subjects)

15名被试(7男8女),每个被试进行三次实验,每次实验相隔一周

3.实验方案

每次实验有15个试验(电影片段)

试验包含15秒的提示,4分钟观看,10秒的结果反馈

 二、SEED-IV四分类数据

1.情绪刺激(Emotion Stimuli)

在实验之前,我们选择了168个电影片段作为四种情绪(快乐、悲伤、恐惧和中性)的素材库。44名参与者(22名女性,均为大学生)。被招募来评估他们在观看电影剪辑时的情绪,用四种离散情绪(快乐、悲伤、中性和恐惧)的关键词,并从两个维度对10个点(从-5到5)进行评分:价格和唤醒。价码从悲伤到快乐不等。唤醒范围从平静到兴奋。不同电影剪辑的平均分级分布如图3-6所示。如图所示,这些条件在价格和唤醒等级方面存在显著差异,反映了在实验室环境中目标情绪的成功激发。最后,在参与者之间获得最高匹配的材料池。这些选定片段的刺激通常导致四种目标情绪的激发。每个电影剪辑的持续时间约为两分钟。

2.被试(subject)

15名被试(在不同的时间做3组实验),三组实验使用的刺激完全不同,总共有45实验 。每一个被试观看24个电影片段(每种情绪有6个片段)

3.实验方案

三、数据处理情况

1.特征提取

在脑电数据预处理中,原始脑电信号以200hz的采样率下采样。为了滤除噪声和伪影,在0.5hz和70hz之间用带通滤波器对脑电信号进行处理。

我们从预处理的脑电信号中提取了6种有效的脑电特征和电极组合。这些特征包括功率谱密度(PSD)、微分熵(DE)、微分非对称性(DASM)、有理非对称性(RASM)、非对称性(ASM)和微分尾性(DCAU)特征。我们使用具有1-s长非重叠汉宁窗的短时傅里叶变换(STFT)计算了5个频带(δ:1-3hz,θ:4-7hz,α:8-13hz,β:14-30hz,γ:31-50hz)中的传统PSD特征。

2.脑电特征的特征平滑

我们引入线性动态系统(LDS)算法来过滤与情绪识别无关的成分;使用传统的移动平均方法(movingAve)进行特征平滑比较。

3,脑电信号的降维

提取的特征可能含有一些与情感识别不相关的成分,导致分类器的性能下降。脑电图在记录时通常会受到噪声和伪影的干扰。此外,高特征维数可能导致“维数诅咒”问题,因此,为了降低计算复杂度,提高计算模型的鲁棒性,通常需要进行特征选择和特征约简。

 

### 如何下载 SEED-V 数据集 SEED-V 是一个用于情感分析的脑电数据集,获取该数据集的具体方法如下: 对于希望访问 SEED-V 数据集的研究人员来说,应当首先联系负责维护此资源的相关机构或个人。根据已有的资料,在论文中提到的数据集可通过发送邮件至特定邮箱来申请获得[^1]。 具体操作流程为准备一封正式请求信件给指定联系人,并说明研究目的以及打算如何利用这些数据。一旦通过审核并得到授权之后,申请人将会收到进一步指示以完成实际的数据传输过程。 此外需要注意的是,由于EEG信号采集过程中不可避免地会引入一些干扰因素,所以在处理这类数据前应该做好预处理工作,比如去除噪声伪迹等[^2]。 ```python import requests from bs4 import BeautifulSoup def fetch_dataset_info(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 假设页面上有明显的联系方式或者下载链接描述 contact_info = soup.find('div', class_='contact').text.strip() download_link = soup.find('a', href=True)['href'] return { "Contact Information": contact_info, "Download Link": download_link } dataset_page_url = "https://bcmi.sjtu.edu.cn/home/liuwei/Wei%20Liu's%20HomePage_files/" info = fetch_dataset_info(dataset_page_url) print(f"To apply for the dataset please reach out to {info['Contact Information']}.") if info["Download Link"]: print(f"You can also try accessing it directly via this link: {info['Download Link']}") else: print("Direct download links are not provided.") ```
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值