import os
import warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TRANSFORMERS_OFFLINE'] = '1'
warnings.filterwarnings("ignore")
from transformers import (AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForSeq2Seq)
from peft import (LoraConfig,
get_peft_model,
TaskType)
from datasets import load_dataset
_tokenizer = AutoTokenizer.from_pretrained("Qwen2-0___5B")
_model = AutoModelForCausalLM.from_pretrained("Qwen2-0___5B")
# for name ,param in _model.named_parameters():
# print(name)
_dataset = load_dataset("json",data_files="data.json",split="train")
def preprocess_dataset(example):
MAX_LENGTH = 256
_input_ids, _attention_mask, _labels = [], [], []
_instruction = _tokenizer(f"User: {example['instruction']}Assistant: ",add_special_tokens=False)