Lora微调大模型

import os
import warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TRANSFORMERS_OFFLINE'] = '1'

warnings.filterwarnings("ignore")

from transformers import (AutoModelForCausalLM,
                          AutoTokenizer,
                          TrainingArguments,
                          Trainer,
                          DataCollatorForSeq2Seq)

from peft import (LoraConfig, 
                  get_peft_model, 
                  TaskType)

from datasets import load_dataset

_tokenizer = AutoTokenizer.from_pretrained("Qwen2-0___5B")
_model = AutoModelForCausalLM.from_pretrained("Qwen2-0___5B")

# for name ,param in _model.named_parameters():
#     print(name)

_dataset = load_dataset("json",data_files="data.json",split="train")

def preprocess_dataset(example):
    MAX_LENGTH = 256
    _input_ids, _attention_mask, _labels = [], [], []
    _instruction = _tokenizer(f"User: {example['instruction']}Assistant: ",add_special_tokens=False)
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值