语义分割图Mask和显著性图Salience Map二值化

该代码示例展示了如何使用Python的PIL库和numpy处理单个及批量图像,将显著性检测得到的0-255像素值的图像转换为二值Mask,即非255值设为0,保持255不变。处理后的图像被保存,注意会覆盖原文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用:将显著性检测的显著性图( 0 1 2 3 … 255 的像素值)转换为二值Mask(0,255)

单个图像

import numpy as np
from PIL import Image

im = Image.open('31.png').convert('L')
im_numpy = np.array(im)
print(np.unique(im_numpy))
print(im.size)

width = im.size[0] 
height = im.size[1] 

for x in range(width):
    for y in range(height):
        pixel = im.getpixel((x, y))
        if pixel != 255:
            im.putpixel((x, y), (0))
            pass
img = im.convert('L')
img.save('456.png')
im_numpy2 = np.array(img)
print(np.unique(im_numpy2))

文件夹全部图像

注意:运行该demo后会覆盖原文件,请及时备份!!!!

import numpy as np
from PIL import Image
import glob


filename = glob.glob(r'文件夹绝对路径/*.png')

for i in filename:
    im = Image.open(i).convert('L')
    im_numpy = np.array(im)
    print(np.unique(im_numpy))
    print(im.size)
    width = im.size[0]
    height = im.size[1]
    for x in range(width):
        for y in range(height):
            pixel = im.getpixel((x, y))
            if pixel != 0:
                im.putpixel((x, y), (255))
                pass
    print(np.unique(im))
    img = im.convert('L')
    img.save(i)
    print(i)
``` def get_mask_single_level(self, coord_x, coord_y, gt_boxes, level_idx): # gt_label: (m,) gt_boxes: (m, 4) # coord_x: (h*w, ) left_border_distance = coord_x[:, None] - gt_boxes[None, :, 0] # (h*w, m) top_border_distance = coord_y[:, None] - gt_boxes[None, :, 1] right_border_distance = gt_boxes[None, :, 2] - coord_x[:, None] bottom_border_distance = gt_boxes[None, :, 3] - coord_y[:, None] border_distances = torch.stack( [left_border_distance, top_border_distance, right_border_distance, bottom_border_distance], dim=-1, ) # [h*w, m, 4] # the foreground queries must satisfy two requirements: # 1. the quereis located in bounding boxes # 2. the distance from queries to the box center match the feature map stride min_border_distances = torch.min(border_distances, dim=-1)[0] # [h*w, m] max_border_distances = torch.max(border_distances, dim=-1)[0] mask_in_gt_boxes = min_border_distances > 0 min_limit, max_limit = self.limit_range[level_idx] mask_in_level = (max_border_distances > min_limit) & (max_border_distances <= max_limit) mask_pos = mask_in_gt_boxes & mask_in_level # scale-independent salience confidence row_factor = left_border_distance + right_border_distance col_factor = top_border_distance + bottom_border_distance delta_x = (left_border_distance - right_border_distance) / row_factor delta_y = (top_border_distance - bottom_border_distance) / col_factor confidence = torch.sqrt(delta_x**2 + delta_y**2) / 2 confidence_per_box = 1 - confidence confidence_per_box[~mask_in_gt_boxes] = 0 # process positive coordinates if confidence_per_box.numel() != 0: mask = confidence_per_box.max(-1)[0] else: mask = torch.zeros(coord_y.shape, device=confidence.device, dtype=confidence.dtype) # process negative coordinates mask_pos = mask_pos.long().sum(dim=-1) >= 1 mask[~mask_pos] = 0 # add noise to add randomness mask = (1 - self.noise_scale) * mask + self.noise_scale * torch.rand_like(mask) return mask ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接本声明。 原文链接:https://blog.youkuaiyun.com/github_72654535/article/details/140577454```给我每个代码参数的含义
最新发布
03-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值