代码例子1: YOLOv8模型训练
代码例子2: YOLOv8模型知识蒸馏
代码例子3: YOLOv8模型部署
代码例子4: YOLOv8模型性能评估
import torch
from torchvision.models.detection import yolo_v3
# 加载训练好的YOLOv8模型
model = yolo_v3()
model.load_state_dict(torch.load('path/to/model_weights.pth'))
model.eval()
# 加载测试集数据进行测试
test_dataset = load_dataset('path/to/test_data')
total_correct = 0
total_samples = len(test_dataset)
# 逐个样本进行预测并计算准确率
for image, target in test_dataset:
output = model([image])
predicted = process_output(output)
correct = calculate_correct(predicted, target)
total_correct += correct
accuracy = total_correct / total_samples
print("模型准确率:", accuracy)
YO