const int MAXN=50010;
int a[MAXN],ans[MAXN<<2],lazy[MAXN<<2];
//a[]为原序列信息,ans[]模拟线段树维护区间和,lazy[]为懒惰标记
void PushUp(int rt)
{
ans[rt]=ans[rt<<1]+ans[rt<<1|1];
}
void Build(int l,int r,int rt)
{
if (l==r)
{
ans[rt]=a[l];
return;
}
int mid=(l+r)>>1;
Build(l,mid,rt<<1);
Build(mid+1,r,rt<<1|1);
PushUp(rt);
}
void PushDown(int rt,int ln,int rn)//ln表示左子树元素结点个数,rn表示右子树结点个数
{
if (lazy[rt])
{
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
ans[rt<<1]+=lazy[rt]*ln;
ans[rt<<1|1]+=lazy[rt]*rn;
lazy[rt]=0;
}
}
void Add(int L,int C,int l,int r,int rt)
{
if (l==r)
{
ans[rt]+=C;
return;
}
int mid=(l+r)>>1;
//PushDown(rt,mid-l+1,r-mid); 若既有点更新又有区间更新,需要这句话
if (L<=mid)
Add(L,C,l,mid,rt<<1);
else
Add(L,C,mid+1,r,rt<<1|1);
PushUp(rt);
}
void Update(int L,int R,int C,int l,int r,int rt)
{
if (L<=l&&r<=R)
{
ans[rt]+=C*(r-l+1);
lazy[rt]+=C;
return;
}
int mid=(l+r)>>1;
PushDown(rt,mid-l+1,r-mid);
if (L<=mid) Update(L,R,C,l,mid,rt<<1);
if (R>mid) Update(L,R,C,mid+1,r,rt<<1|1);
PushUp(rt);
}
LL Query(int L,int R,int l,int r,int rt)
{
if (L<=l&&r<=R)
return ans[rt];
int mid=(l+r)>>1;
PushDown(rt,mid-l+1,r-mid);//若更新只有点更新,不需要这句
LL ANS=0;
if (L<=mid) ANS+=Query(L,R,l,mid,rt<<1);
if (R>mid) ANS+=Query(L,R,mid+1,r,rt<<1|1);
return ANS;
}
线段树【模板】//待检验
最新推荐文章于 2023-02-02 17:54:16 发布