Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review(3)

ABSTRACT

Image-based 3D reconstruction is a challenging task that involves inferring the 3D shape of an object or scene from a set of input images. Learning-based methods have gained attention for their ability to directly estimate 3D shapes. This review paper focuses on SOTA techniques for 3D reconstruction, including the generation of novel, unseen views.

DISCUSSION

Traditionally, 3D scenes have been represented using meshes and points due to their explicit nature and compatibility with rapid GPU/CUDA-based rasterization.

However, recent advancements like NeRF methods settles on for continuous scene representations, employing techniques such as multi layerd perceptron optimization through volumetric ray-marching for novel view synthesis. While continuous representations aid optimization, the stochastic sampling necessary for rendering introduces costly noise.

Gaussian Splatting bridges this gap by leveraging a 3D Gaussian representation for optimization, achieving SOTA visual quality and competitive training times.

Additionally, a tile-based splatting solution ensures real-time rendering with top-tier quality. Gaussian Splatting has delivered some of best results in term of quality and efficiency while rendering 3D scenes.


Gaussian Splatting has evolved to handle dynamic and deformable objects by modifying its original representation. This involves incorporating parameters like 3D position, rotation, scaling factor, and spherical harmonics coefficients for color and opacity.

Recent progress in this domain includes the introduction

### GPS-Gaussian 实时人体新视图合成的应用与原理 #### 应用背景 GPS-Gaussian 是一种用于实时人类新视角合成的技术,能够在不进行任何形式的微调或优化的情况下即时为任何人像生成新的视角[^2]。 #### 技术核心 该技术的核心在于利用像素级别的3D高斯分布来表征人物。具体来说: - **三维高斯表示**:通过引入三维高斯函数来描述场景中的每一个像素点的位置和颜色属性。这种表示方式不仅保留了连续体积辐射场的优点,还有效减少了不必要的计算开销[^3]。 - **各向异性协方差优化**:为了更精准地捕捉物体表面细节并减少模糊效应,系统会对每个高斯模型执行交叉优化操作,尤其是针对其形状参数——即各向异性协方差矩阵进行了特别设计,使得最终效果更加逼真自然。 #### 渲染机制 基于上述建模基础之上,GPS-Gaussian 开发了一套高效的可见性感知渲染算法,可以处理复杂的光照条件以及遮挡关系等问题,并且支持异构硬件平台上的高性能运算需求。这确保了即使是在移动设备上也能流畅运行,达到每秒至少30帧以上的播放速率。 ```python import numpy as np def render_gaussian_splatting(gaussians, camera_pose): """ Render a scene using the provided list of gaussians and given camera pose. :param gaussians: List of dictionaries containing 'position', 'color' and 'covariance' keys for each gaussian element. :type gaussians: list[dict] :param camera_pose: Camera transformation matrix (4x4). :type camera_pose: np.ndarray Returns an image array representing rendered view from specified viewpoint. """ # Placeholder implementation; actual rendering would involve complex calculations pass ``` #### 数据集与训练流程 尽管不需要额外的数据准备阶段来进行个性化调整,但在初次部署前仍需依赖于一定规模的基础数据集完成预训练工作。这些样本通常来源于公开可用的标准测试集合或是特定应用场景下的采集素材库[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于初见月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值