洛谷 P4467 [SCOI2007]k短路

本文介绍了洛谷P4467题目的解题策略,重点聚焦于使用A*算法寻找第k个最短路径。通过A*算法的特性,当目标状态第一次被取出时即可得到最优解。为了实现启发式搜索,文章应用了SPFA+SLF+LLL组合来反向计算图的最短路径。

在这里插入图片描述
具体题目见洛谷 P4467

方法一:A*

思路:A* 算法目标状态第一次被取出时即为最优解,根据这个特点,我们只需要取出第 k 个目标状态就是答案。

又因为 A* 算法的估值尽量与正确值相似且必须 ≤≤ 正确值的要求。这里使用 SPFA+SLF+LLL 反向计算最短路径作为启发函数。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 205;
int n, m, k, a, b, sum;
vector<pair<int, int> >E1[maxn];//反图,first为边终点,second为边权
vector<pair<int, int> >E2[maxn];//正图
int d[maxn];//维护每个点到终点的距离
bool vis[maxn];
struct node {
   
   
	int now, w, guess;//边起点、边权、估值
	string route;  //用string存路径方便处理
	//构造函数方便初始化
	node(int now, int w, int guess, string route) : now(now), w(w), guess(guess), route(route) {
   
   	}
	bool operator<(const node& a)const {
   
   //要按照题目要求进行运算符重载
		if (w + d[now] != a.w + d[a.now])    
### 解题思路 P4160 [SCOI2009] 生日快乐 这道题的核心在于递归与分治策略。题目要求将一个矩形蛋糕切成若干块,使得每一块的长宽比的最大值最小。由于每一块的长宽比是独立的,因此可以通过递归的方法,将问题分解为子问题来求解。 #### 核心思路: 1. **递归切分**:每次将蛋糕分成两部分,并递归地对这两部分进行同样的操作,直到只剩一块为止。 2. **枚举切分方式**:对于每一层递归,需要枚举所有可能的切分方式(横向或纵向),以及每一块的大小比例。 3. **取最大值与最小值**:每一步递归中,选择切分方式使得两部分的最大长宽比尽可能小。 #### 关键点: - **长宽比处理**:为了保证长宽比的计算准确,需要确保长边在分子,短边在分母。 - **切分方式枚举**:枚举所有可能的切分比例,确保没有遗漏。 - **递归终止条件**:当只剩一块时,直接返回当前长宽比。 ### 代码示例 以下是一个完整的代码实现,展示了如何通过递归方法解决这个问题: ```cpp #include <iostream> #include <cstdio> #include <algorithm> using namespace std; int x, y, n; // 计算最大公约数 int gcd(int x, int y) { if (y == 0) return x; return gcd(y, x % y); } // 递归函数,用于计算最小的长宽比 double qie(int x, int y, int n) { if (x < y) swap(x, y); // 保证x是较长边 int g = gcd(x, y); if (g != 1) { x /= g; y /= g; } if (n == 1) return static_cast<double>(x) / y; // 终止条件 double ans = 10000000; for (int i = 1; i < n; ++i) { // 横向切分 ans = min(ans, max(qie(x * i, y * n, i), qie(x * (n - i), y * n, n - i))); // 纵向切分 ans = min(ans, max(qie(x * n, y * i, i), qie(x * n, y * (n - i), n - i))); } return ans; } int main() { scanf("%d%d%d", &x, &y, &n); printf("%.6lf\n", qie(x, y, n)); return 0; } ``` ### 代码解析 1. **gcd函数**:用于化简长宽比,避免浮点数计算误差。 2. **qie函数**: - 首先交换长宽,确保长边在前。 - 化简长宽比的分数,避免重复计算。 - 递归终止条件:当只剩一块时,返回长宽比。 - 枚举所有可能的切分方式,取最小的长宽比。 3. **main函数**:读取输入并调用递归函数,输出结果。 ### 复杂度分析 - **时间复杂度**:由于每次递归会枚举所有可能的切分方式,时间复杂度为指数级,但由于数据范围较小,可以通过递归直接解决。 - **空间复杂度**:递归深度由切分次数决定,空间复杂度较低。 ### 总结 这道题通过递归的方式,将大问题分解为子问题,结合枚举所有可能的切分方式,最终找到最优解。递归与分治策略是解决此类问题的核心思想。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值