初学数据结构的练手项目,供大家参考,具体思路和学生管理系统大同小异,不过这次实现我是使用了双向链表。
本文通过C语言内核链表去写通讯录管理系统
内核链表有封装的链表处理函数,用起来非常方便,本文由脱产学习C语言的门外汉编写,如有更好见解欢迎斧正。
以下是内核链表的代码(备注以便日后翻找查看)
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
#define LIST_POISON1 ((struct list_head *) 0x00100100)
#define LIST_POISON2 ((struct list_head *) 0x00200200)
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *xnew,
struct list_head *prev,
struct list_head *next)
{
next->prev = xnew;
xnew->next = next;
xnew->prev = prev;
prev->next = xnew;
}
#else
extern void __list_add(struct list_head *xnew,
struct list_head *prev,
struct list_head *next);
#endif
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_add(struct list_head *xnew, struct list_head *head)
{
__list_add(xnew, head, head->next);
}
#else
extern void list_add(struct list_head *xnew, struct list_head *head);
#endif
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *xnew, struct list_head *head)
{
__list_add(xnew, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void list_del(struct list_head *entry);
#endif
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
* Note: if 'old' was empty, it will be overwritten.
*/
static inline void list_replace(struct list_head *old,
struct list_head *xnew)
{
xnew->next = old->next;
xnew->next->prev = xnew;
xnew->prev = old->prev;
xnew->prev->next = xnew;
}
static inline void list_replace_init(struct list_head *old,
struct list_head *xnew)
{
list_replace(old, xnew);
INIT_LIST_HEAD(old);
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del(list->prev, list->next);
list_add(list, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del(list->prev, list->next);
list_add_tail(list, head);
}
/**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
/**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
first->prev = prev;
prev->next = first;
last->next = next;
next->prev = last;
}
/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}
/**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}
/**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static inline void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
}
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#define container_of(ptr, type, member) ({ const typeof( ((type *)0)->member )*__mptr = (ptr);(type *)( (char *)__mptr - offsetof(type,member) );})
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
/**
* list_next_entry - get the next element from a list
* @ptr: the list head to take the element from.
* @member: the name of the list_struct within the struct.
*
* Note, that next is expected to be not null.
*/
#define list_next_entry(ptr, member) \
list_entry((ptr)->member.next, typeof(*ptr), member)
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); \
pos = pos->next)
/**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* This variant differs from list_for_each() in that it's the
* simplest possible list iteration code, no prefetching is done.
* Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); \
pos = pos->prev)
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
/**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue.
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))
/**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_entry_safe_continue
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_entry_safe_from
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_entry_safe_reverse
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member))
#endif
正文代码
本文使用的是双向链表,内核链表
#include <stdio.h>
#include <stdlib.h>
//内核链表头文件不能少
#include "list.h"
#include <string.h>
//定义一个联系人结构体
struct contacts
{
//第一个成员是内核链表里的结构体
struct list_head list;
char name[1024];
char tel[1024];
};
//菜单函数,打印菜单
void menu()
{
printf("=====================================\n");
printf("============1.增加联系人=============\n");
printf("============2.删除联系人=============\n");
printf("============3.查找联系人=============\n");
printf("============4.修改联系人=============\n");
printf("==========5.设置星标联系人===========\n");
printf("============6.打印通讯录=============\n");
printf("============0.退出通讯录=============\n");
printf("=====================================\n");
}
// 插入新的联系人
void insert(struct list_head *head, char *name, char *tel)
{
struct contacts *new = malloc(sizeof(struct contacts));
strcpy(new->name, name);
strcpy(new->tel, tel);
// 内核链表函数尾插
list_add_tail(&new->list, head);
}
// 查找联系人
void find(struct list_head *head)
{
int f;
struct list_head *pos = head->next;
printf(" ********************** \n");
printf(" 选择以什么方式查找 \n");
printf("********************************\n");
printf("** 1、名字查找 2、电话查找 **\n");
printf("********************************\n");
//此处getchar()是防止输入数字以外的函数,其实也可以通过scanf的返回值判断输入的值是否为整形
scanf("%d", &f);
getchar();
//判定加输出
switch (f)
{
case 1:
{
char name[1024];
printf("请输入要查找联系人的姓名:\n");
scanf("%s", name);
while (pos != head)
{
//对比字符串
if (strcmp(((struct contacts *)pos)->name, name) == 0)
{
//pos是struct list_head*类型的,强转一下取地址,方便操作
printf("%s\t%s\n", ((struct contacts *)pos)->name, ((struct contacts *)pos)->tel);
return;
}
pos = pos->next;
}
printf("未找到联系人,请核实姓名!\n");
break;
}
case 2:
{
char tel[1024];
printf("请输入要查找联系人的电话:\n");
scanf("%s", tel);
while (pos != head)
{
if (strcmp(((struct contacts *)pos)->tel, tel) == 0)
{
printf("%s\t%s\n", ((struct contacts *)pos)->name, ((struct contacts *)pos)->tel);
return;
}
pos = pos->next;
}
printf("未找到联系人,请核实电话!\n");
break;
}
default:
printf("请输入正确的查询方式!\n");
}
return;
}
// 遍历/打印联系人列表
void show(struct list_head *head)
{
struct list_head *pos;
printf("姓名\t电话\t");
printf("\n");
//内核函数带参宏定义,即相当于for(pos=head->next,pos != head,pos = pos->next)
list_for_each(pos, head)
{
//强转,作用类似上一个查找函数的输出
struct contacts *each = (struct contacts *)pos;
printf("%s\t%s\t", each->name, each->tel);
printf("\n");
}
}
// 删除联系人
void del(struct list_head *head)
{
struct list_head *pos = head->next;
while (pos != head)
{
char name[1024];
printf("请输入要删除联系人的姓名:\n");
scanf("%s", name);
while (pos != head)
{
if (strcmp(((struct contacts *)pos)->name, name) == 0)
{
list_del(pos);
return;
}
pos = pos->next;
}
printf("未找到联系人,请核实姓名!\n");
}
}
// 设置星标联系人
// 星标联系人是只始终在第一个的联系人
// 利用内核链表的list_move函数实现的
void star(struct list_head *head)
{
struct list_head *pos = head->next;
while (pos != head)
{
char name[1024];
printf("请输入要设置星标联系人的姓名:\n");
scanf("%s", name);
while (pos != head)
{
if (strcmp(((struct contacts *)pos)->name, name) == 0)
{
//内核链表函数,作用是取出链表某个节点并将其头插
list_move(pos, head);
return;
}
pos = pos->next;
}
printf("未找到联系人,请核实姓名!\n");
}
}
// 增加联系人
void add(struct list_head *head)
{
struct list_head *new = malloc(sizeof(struct list_head));
printf("请输入要增加的联系人的姓名电话:\n");
scanf("%s%s", ((struct contacts *)new)->name, ((struct contacts *)new)->tel);
//内核链表寒湖是尾插
//为了更好突出星标联系人,增加联系人都用尾插
list_add_tail(new, head);
}
// 修改联系人
void change(struct list_head *head)
{
char name[1024];
struct list_head *pos = head->next;
printf("请输入要修改联系人的姓名:\n");
scanf("%s", name);
//遍历链表
while (pos != head)
{
if (strcmp(((struct contacts *)pos)->name, name) == 0)
{
printf(" ********************** \n");
printf(" 请选择修改项目 \n");
printf("****************************\n");
printf("** 1、名字 2、电话 **\n");
printf("****************************\n");
int f;
scanf("%d", &f);
switch (f)
{
case 1:
{
printf("请输入修改后的联系人的姓名:\n");
scanf("%s", ((struct contacts *)pos)->name);
}
break;
case 2:
{
printf("请输入修改后的联系人的电话:\n");
scanf("%s", ((struct contacts *)pos)->tel);
}
break;
default:
printf("请输入正确的查询方式!\n");
}
return;
}
pos = pos->next;
}
printf("未找到联系人,请核实姓名!\n");
return;
}
int main()
{
// 初始化头节点
struct list_head *head = malloc(sizeof(struct list_head));
INIT_LIST_HEAD(head);
//简单插入一些节点
insert(head, "亚当斯", "213-555-0144");
insert(head, "安妮", "232-155-0121");
insert(head, "安再峰", "745-505-6589");
insert(head, "爱丽丝", "222-555-3782");
insert(head, "布鲁斯", "313-555-7024");
insert(head, "布雷迪", "213-555-0354");
int choice;
do
{
printf(" 欢迎使用通讯录管理系统!\n");
menu();
scanf("%d", &choice);
switch (choice)
{
case 0:
break;
;
case 1:
add(head);
break;
case 2:
del(head);
break;
case 3:
find(head);
break;
case 4:
change(head);
break;
case 5:
star(head);
break;
case 6:
show(head);
break;
default:
printf("请输入正确的数字\n");
break;
}
} while (choice);
free(head);
}