b站up主:刘二大人《PyTorch深度学习实践》
教程: https://www.bilibili.com/video/BV1Y7411d7Ys?p=6&vd_source=715b347a0d6cb8aa3822e5a102f366fe
两层卷积层
:
t
o
r
c
h
.
n
n
.
C
o
n
v
2
d
+
最大池化
+
F
l
a
t
t
e
n
激活函数:
R
e
L
U
交叉熵损失函数:
n
n
.
C
r
o
s
s
E
n
t
r
o
p
y
L
o
s
s
优化器:
o
p
t
i
m
.
A
d
a
m
数据集:
M
N
I
S
T
手写体
两层卷积层:torch.nn.Conv2d+最大池化+Flatten \\激活函数:ReLU \\交叉熵损失函数:nn.CrossEntropyLoss \\优化器:optim.Adam \\数据集:MNIST手写体
两层卷积层:torch.nn.Conv2d+最大池化+Flatten激活函数:ReLU交叉熵损失函数:nn.CrossEntropyLoss优化器:optim.Adam数据集:MNIST手写体
网络结构:
训练过程:
源码:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size = 5) #输入通道为1,kernel数量为10
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size = 5) #输入通道为10,kernel个数为20
self.pooling = torch.nn.MaxPool2d(2) #池化kernel为2*2
self.flatten = torch.nn.Flatten()
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = self.flatten(x)
x = self.fc(x)
return x
model = Net()
print(model, '\n')
criterion=torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
loss_val = []
def train(epoch):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
# print('inputs = ', inputs.shape)
# print('outputs = ', outputs.shape)
# print('target = ', target.shape)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i%300 == 299:
print('[%d,%5d]loss:%.3f'%(epoch+1,i+1,running_loss/300))
loss_val.append(running_loss)
running_loss = 0.0
epoch_list.append(epoch+1)
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim = 1) #在outputs中找到最高概率的index赋值给predicted
total += labels.size(0) #batch_size++ 也就是样本总数
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
accuracy.append(correct/total)
accuracy = []
epoch_list = []
for epoch in range(3):
train(epoch)
test()
plt.plot(epoch_list, accuracy, c = 'b')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.show()