在上篇博客中我们发现了错票,重票的问题,这问题交线程安全问题,引入同步机制处理!
- 例子:创建三个窗口卖票,总票数为100张.使用实现Runnable接口的方式
- 1.问题:卖票过程中,出现了重票、错票 -->出现了线程的安全问题
- 2.问题出现的原因:当某个线程操作车票的过程中,尚未操作完成时,其他线程参与进来,也操作车票。
- 3.如何解决:当一个线程a在操作ticket的时候,其他线程不能参与进来。直到线程a操作完ticket时,其他
- 线程才可以开始操作ticket。这种情况即使线程a出现了阻塞,也不能被改变。
需要考虑如何解决线程安全问题?同步机制:有三种方式。
在Java中,我们通过同步机制,来解决线程的安全问题。
方式一:同步代码块
- synchronized(同步监视器){
-
//需要被同步的代码
- }
- 说明:1.操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。
- 2.共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。
- 3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。
- 要求:多个线程必须要共用同一把锁。
- 补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。
implements Runnabled 的同步代码块
class Window1 implements Runnable{
private int ticket = 100;
// Object obj = new Object();
// Dog dog = new Dog();
@Override
public void run() {
// Object obj = new Object();
while(true){
synchronized (this){//此时的this:唯一的Window1的对象 //方式二:synchronized (dog) {
//多个线程必须要共用同一把锁。
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
} else {
break;
}
}
}
}
}
public class WindowTest1 {
public static void main(String[] args) {
Window1 w = new Window1();
Thread t1 = new Thread(w);
Thread t2 = new Thread(w);
Thread t3 = new Thread(w);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
extend Thread 的同步代码块
class Window2 extends Thread{
private static int ticket = 100;
private static Object obj = new Object();
@Override
public void run() {
while(true){
//正确的
// synchronized (obj){
synchronized (Window2.class){//Class clazz = Window2.class,Window2.class只会加载一次
//错误的方式:this代表着t1,t2,t3三个对象
// synchronized (this){
if(ticket > 0){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(getName() + ":卖票,票号为:" + ticket);
ticket--;
}else{
break;
}
}
}
}
}
public class WindowTest2 {
public static void main(String[] args) {
Window2 t1 = new Window2();
Window2 t2 = new Window2();
Window2 t3 = new Window2();
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
方式二:同步方法。
- 关于同步方法的总结:
-
- 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。
-
- 非静态的同步方法,同步监视器是:this
- 静态的同步方法,同步监视器是:当前类本身
*如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。
private synchronized void show(){
}
synchronized做修饰符修饰方法
class Window3 implements Runnable {
private int ticket = 100;
@Override
public void run() {
while (true) {
show();
}
}
private synchronized void show(){//同步监视器:this
//synchronized (this){
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
}
//}
}
}
@Override
public void run() {
while (true) {
show();
}
}
private static synchronized void show(){//同步监视器:Window4.class
//private synchronized void show(){ //同步监视器:t1,t2,t3。此种解决方式是错误的
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
}
}
}
为啥不是修饰run方法?
class Window3 implements Runnable {
private int ticket = 100;
@Override
public synchronized void run() {
while (true) {
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
}else {
break;
}
// show();
}
}
// private synchronized void show(){//同步监视器:this
// //synchronized (this){
//
//
// //}
// }
}
会卡在一个线程里不出来!!!
extend 的同步方法
class Window4 extends Thread {
private static int ticket = 100;
@Override
public void run() {
while (true) {
show();
}
}
private static synchronized void show(){//同步监视器:Window4.class
//private synchronized void show(){ //同步监视器:t1,t2,t3。此种解决方式是错误的
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
}
}
}
同步的方式,解决了线程的安全问题。—好处
操作同步代码时,只能有一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。 —局限性
使用同步机制将单例模式中的懒汉式改写为线程安全的
public class BankTest {
}
class Bank{
private Bank(){}
private static Bank instance = null;
public static Bank getInstance(){
//方式一:效率稍差
// synchronized (Bank.class) {
// if(instance == null){
//
// instance = new Bank();
// }
// return instance;
// }
//方式二:效率更高
if(instance == null){
synchronized (Bank.class) {
if(instance == null){
instance = new Bank();
}
}
}
return instance;
}
}
死锁
翻译翻译什么TMD叫TMD死锁!
所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。 因此我们举个例子来描述,如果此时有一个线程A,按照先锁a再获得锁b的的顺序获得锁,而在此同时又有另外一个线程B,按照先锁b再锁a的顺序获得锁。
哦! 两个进程抢资源僵持住了就tmd叫死锁啊!
- 演示线程的死锁问题
- 1.死锁的理解:不同的线程分别占用对方需要的同步资源不放弃,
- 都在等待对方放弃自己需要的同步资源,就形成了线程的死锁
- 2.说明:
- 1)出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于阻塞状态,无法继续
- 2)我们使用同步时,要避免出现死锁。
package com.atguigu.java1;
//死锁的演示
class A {
public synchronized void foo(B b) { //同步监视器:A类的对象:a
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 进入了A实例的foo方法"); // ①
// try {
// Thread.sleep(200);
// } catch (InterruptedException ex) {
// ex.printStackTrace();
// }
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 企图调用B实例的last方法"); // ③
b.last();
}
public synchronized void last() {//同步监视器:A类的对象:a
System.out.println("进入了A类的last方法内部");
}
}
class B {
public synchronized void bar(A a) {//同步监视器:b
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 进入了B实例的bar方法"); // ②
// try {
// Thread.sleep(200);
// } catch (InterruptedException ex) {
// ex.printStackTrace();
// }
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 企图调用A实例的last方法"); // ④
a.last();
}
public synchronized void last() {//同步监视器:b
System.out.println("进入了B类的last方法内部");
}
}
public class DeadLock implements Runnable {
A a = new A();
B b = new B();
public void init() {
Thread.currentThread().setName("主线程");
// 调用a对象的foo方法
a.foo(b);
System.out.println("进入了主线程之后");
}
public void run() {
Thread.currentThread().setName("副线程");
// 调用b对象的bar方法
b.bar(a);
System.out.println("进入了副线程之后");
}
public static void main(String[] args) {
DeadLock dl = new DeadLock();
new Thread(dl).start();
dl.init();
}
}
解决线程安全问题的方式三:Lock锁 — JDK5.0新增
-
- 面试题:synchronized 与 Lock的异同?
- 相同:二者都可以解决线程安全问题
- 不同:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器
- Lock需要手动的启动同步(lock()),同时结束同步也需要手动的实现(unlock())
- 2.优先使用顺序:
- Lock -> 同步代码块(已经进入了方法体,分配了相应资源) ->同步方法(在方法体之外)
- 面试题:如何解决线程安全问题?有几种方式
class Window implements Runnable{
private int ticket = 100;
//1.实例化ReentrantLock
private ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while(true){
try{
//2.调用锁定方法lock()
lock.lock();
if(ticket > 0){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":售票,票号为:" + ticket);
ticket--;
}else{
break;
}
}finally {
//3.调用解锁方法:unlock()
lock.unlock();
}
}
}
}
ok,ok! 到此为止我们已经解决了卖票窗口的错票,重票问题? 可是我又有新的需求,我tmd想让这三个窗口轮流卖票怎么做?
引入线程通信方法