pandas数据清洗

所需数据以及代码
gitee地址:https://gitee.com/yu-min-guo/python13/tree/master/nodebooks
GitHub地址:https://github.com/kinderkk/Python13/tree/master/nodebooks

1、预备知识-python核心用法常用数据分析库

概述

Python 是当今世界最热门的编程语言,而它最大的应用领域之一就是数据分析。在python众多数据分析工具中,pandas是python中非常常用的数据分析库,在数据分析,机器学习,深度学习等领域经常被使用。使用 Pandas 我们可以 Excel/CSV/TXT/MySQL 等数据读取,然后进行各种清洗、过滤、透视、聚合分析,也可以直接绘制折线图、饼图等数据分析图表,在功能上它能够实现自动化的对大文件处理,能够实现 Excel 的几乎所有功能并且更加强大。

本实验将通过实战的方式,介绍pandas数据分析库的基本使用,让大家在短时间内快速掌握python的数据分析库pandas的使用,为后续项目编码做知识储备

实验环境

  • Python 3.7
  • PyCharm

任务一:环境安装与配置

【实验目标】

本实验主要目标为在Windows操作系统中,完成本次实验的环境配置任务,本实验需要的软件为PyCharm+Python 3.7

【实验步骤】

1、安装Python 3.7

2、安装Pycharm

3、安装jupyter、pandas、numpy、notebook

打开CMD,并输入以下命令,安装jupyter、notebook、pandas和numpy

pip install jupyter notebook pandas numpy

安装完成后会有类似如下文字提示:

img

以上步骤完成后,实验环境配置工作即已完成,关闭CMD窗口

任务二:Pandas数据分析实战

【任务目标】

本任务主要目标为使用pandas进行数据分析实战,在实战过程中带大家了解pandas模块的一下功能:

  • 准备工作
  • 检查数据
  • 处理缺失数据
  • 添加默认值
  • 删除不完整的行
  • 删除不完整的列
  • 规范化数据类型
  • 重命名列名
  • 保存结果

【任务步骤】

1、打开CMD,执行如下命令,开启jupyter

jupyter notebook

成功执行以上命令后,系统将自动打开默认浏览器,如下图所示:

img

成功打开浏览器后,按如下流程创建 notebook 文件

img

对新建notebook进行重命名操作

img

img

2、notebook 文件新建完成后,接下来在新建的 notebook 中编写代码

导入 Pandas 到我们的代码中,代码如下

import pandas as pd

小提示:输入完成代码后,按下【Shift + Enter】组合键即可运行该单元格中的代码,后面输入完每个单元格的代码后都需要进行类似操作,代码才会运行

加载数据集,代码如下:

data = pd.read_csv('./data/movie_metadata.csv')

3、检查数据

查看数据集前5行

data.head()

运行结果如下图所示:

img

我们可以通过上面介绍的 Pandas 的方法查看数据,也可以通过传统的 Excel 程序查看数据

Pandas 提供了一些选择的方法,这些选择的方法可以把数据切片,也可以把数据切块。下面我们简单介绍一下:

  • 查看一列的一些基本统计信息:data.columnname.describe()
  • 选择一列:data[‘columnname’]
  • 选择一列的前几行数据:data[‘columnsname’][:n]
  • 选择多列:data[[‘column1’,‘column2’]]
  • Where 条件过滤:data[data[‘columnname’],condition]

4、处理缺失数据

缺失数据是最常见的问题之一。产生这个问题有以下原因:

  • 从来没有填正确过
  • 数据不可用
  • 计算错误

无论什么原因,只要有空白值得存在,就会引起后续的数据分析的错误。下面介绍几个处理缺失数据的方法:

  • 为缺失数据赋值默认值
  • 去掉/删除缺失数据行
  • 去掉/删除缺失率高的列

4.1、添加默认值

使用空字符串来填充country字段的空值

data.country= data.country.fillna('')

使用均值来填充电影时长字段的空值

data.duration = data.duration.fillna(data.duration.mean())

4.2、删除不完整的行

data.dropna()

运行结果如下(由于输出内容给较多,结果中省略了中间部分数据,只显示开头和结尾部分):

img

由上图可以看出,由于第4行数据存在缺失值,因此被删除

提示:dropna操作并不会在原始数据上做修改,它修改的是相当于原始数据的一个备份,因此原始数据还是没有变

删除一整行的值都为 NA:

data.dropna(how='all')// all 这一行全部为空才会被删除// any 一行中任意一个为空,就会被删除

运行结果如下:

img

从上图可知,由于限定条件为:删除一整行都为NA的数据,因此不满足此条件的数据行还是会被保留

我们也可以增加一些限制,dropna(thresh=n) 保留至少有 n 个非 NA 数的行(在下面的代码中,行数据中至少要有 5 个非空值)

data.dropna(thresh=5)

运行结果如下:

img

也可指定需要删除缺失值的列

我们以 title_year 这一列为例,首先查看 title_year 这一列中存在的缺失值:

data['title_year'].isnull().value_counts()

结果如下:

img

由上图可知,title_year 这一列中存在108个缺失值

接下来查看 title_year 删除完缺失值后的情况

dropna(subset=[‘title_year’]),丢弃’title_year’这一列中有缺失值的行

new_data = data.dropna(subset=['title_year'])new_data['title_year'].isnull().value_counts()

上面的 subset 参数允许我们选择想要检查的列。如果是多个列,可以使用列名的 list 作为参数。

运行结果如下:

img

4.3、删除不完整的列

我们可以上面的操作应用到列上。我们仅仅需要在代码上使用 axis=1 参数。这个意思就是操作列而不是行。(我们已经在行的例子中使用了 axis=0,因为如果我们不传参数 axis,默认是axis=0)

删除一整列为 NA 的列:

data.dropna(axis=1, how='all')

运行结果如下:

img

删除任何包含空值的列:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫尼莫尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值