【AMD显卡在WIndow10/11部署带GPU支持的深度学习环境(Pytorch-DirectML篇)】

本文档详细介绍了如何在Windows环境下,针对AMD显卡安装PyTorch-DirectML的步骤,包括安装AMDDirectML SDK、创建Conda虚拟环境、安装相关依赖库及PyTorch-DirectML,并通过代码验证GPU加速的成功。此外,还预告了后续将使用PyTorch-DirectML或Tensorflow-DirectML进行ONNX模型推理的教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
全中文网首发,可以收藏本教程纪念一下

这篇是之前Tensorflow-DirectML的姊妹篇,如果对TF感兴趣的可以搜索我的博文。

首先我们丢一个官网地址,但是官网那个会误导新人如果你按那个操作的话。

https://docs.microsoft.com/en-us/windows/ai/directml/gpu-pytorch-windows

本篇博文,我们将安装PyTorch 1.8.0
PS:MS对FB还是蛮厚道的,编译了比较新的版本,不像TF,给了个1.X,太坏了,至少给个2.X吧
在这里插入图片描述

这里用我的方法操作:
首先声明一下,因为我的显卡是AMD RX6600,不带XT(性能和RTX3060 12G版本半斤八两),所以目前没有最新的WSL2驱动,如果有了的话欢迎告知我,所以我这里就用Windows本地演示。

第一步:安装AMD DirectML支持的SDK,相当于A卡的Cuda
可以参考:

https://blog.youkuaiyun.com/weixin_44029053/article/details/121581870

这篇博文Flag部分安装驱动的描述。

第二步:安装Pytorch-DirectML

1:下载安装Conda完整版或MiniConda,这边如果硬盘够大我推荐Conda完整版,地址:

https://www.anaconda.com/products/individual
下载Anaconda Individual Edition版,这个是个人免费版
Python版本随意,反正我们后面单独创建Python环境

2:在Conda下创建Python虚拟环境:
我这创建了两个,一个给Pytorch用,一个给Tensoflow用,因为我本来用Miniconda的,官方的
Pytorch-DirectML教程把我之前的Tensoflow-DirectML环境整没了,很难还原回去,所以。。
废话不多说,我们管理员权限打开PowerShell,输入

conda create -n your_env_name python=x.x

创建Python虚拟环境,your_env_name 是环境名字,x.x是python版本,这里我的是

conda create -n torch_dml python=3.8

必须用python38.
以下都用我的名字torch_dml 演示
然后激活torch_dml :

conda activate torch_dml

3:在激活的条件下,安装我们的Pytorch依赖库:

conda install pandas
conda install tensorboard 
conda install matplotlib 
conda install tqdm 
conda install pyyaml 
pip install opencv-python
pip install wget
pip install torchvision==0.9.0

PS:上面代码在安装torchvision的时候,会自动下载一个Pytorch CPU版本,这个没关系,他只是一个上层,我们在后面底层Tensor变量可以转化为GPU版本

上面说的“安装torchvision的时候,会自动下载一个Pytorch CPU版本”,并且后面要安装的Pytorch-DirectML也会覆盖CPU版本的代码,这样的确代码是可以运行的,但是这样其实并不严谨,实际上我看了官方那个,CPU版本其实并不需要,强迫症的可以执行:

pip uninstall torch

上面安装代码你可以一行一行复制到PowerShell安装,防止某个安装失败
PS:博主是在开飞机的条件下安装的,如果没有飞机,那么你可以切换国内源
参考:

https://www.cnblogs.com/weiyunpeng/p/11893222.html

4:安装Pytorch-DirectML

依然在我们的Conda虚拟环境torch_dml下安装:

pip install pytorch-directml

5:安装VSCODE设置环境运行代码
在这里插入图片描述
输入代码运行:

import torch

tensor1 = torch.tensor([1]).to("dml")
tensor2 = torch.tensor([2]).to("dml")

dml_algebra = tensor1 + tensor2

print("result:",dml_algebra.item())

在这里插入图片描述
如果你出现我上面的“result: 3”这个结果,那么恭喜你,大获成功!

更多demo可以访问官方GitHub:

https://github.com/microsoft/DirectML/tree/master/PyTorch

还有没有好玩的?有哦,下一步,我们将用Pytorch-DirectML或Tensorflow-DirectML导出onnx,用我们的ONNX-DirectML版或者Vulkan在AMD GPU(Windows本地平台)进行GPU加速推理,敬请期待!
在这里插入图片描述

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值