The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 ,n2 ,n3, … ,nmwhere m is the number of integers in the set and n1, … ,nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105
10296
题解
题意:
- 求每组数据中所有数的最小公倍数。
思路:
-
求a0与a1的最小公倍数min,再求min与a2的最小公倍数赋给min………直到所有数都求完
-
a与b的最小公倍数 = a * b / a与b的最大公约数(最小公倍数=两数的乘积/最大公约数)
-
辗转相除法求最大公约数
Code
#include<iostream>
using namespace std;
long long gcd(long long a, long long b)//递归求最大公因数
{
return b == 0 ? a : gcd(b, a % b);
}
long long lcm(long long a, long long b)//求最小公倍数
{
return (a * b / gcd(a, b));//最小公倍数=两数的乘积/最大公约(因)数
}
int main()
{
long long n, m, a, b;
cin >> n;
for(int i = 0; i < n; i++)
{
cin >> m;
if(m == 0)
continue;
cin >> a;
for(int j = 1; j < m; j++)
{
cin >> b;
a = lcm(a, b);
}
cout << a <<endl;
}
}