A ring is compose of n circles as shown in diagram. Put natural number 1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
我的见解:不用多说,就是dfs;然后要输出好几列满足条件的数字,搞两个数组,循环中用过的数字就标志,没标志的就可以用,然后另一个数组就用来记录满足条件的一列数字,满足题意则输出,也是用常规的递归来完成
#include<bits/stdc++.h>
using namespace std;
int n, k = 0;
int a[22] = { 0 }, b[22] = { 1 ,1};
int pan(int k)
{
int j;
for (j = 2; j <= sqrt(k); j++)
{
if (k%j == 0)
{
return 0;
}
}
return 1;
}
void dfs(int cur)
{
if (cur == n && pan(1+b[n - 1])==1)
{
cout << b[0];
int i;
for (i = 1; i < n; i++)
{
cout << ' ' << b[i];
}
cout << endl;
}
else
{
for (int i = 2; i <= n;i++)
{
if (a[i]==1 || pan(b[cur - 1]+i)==0)
{
continue;
}
b[cur] = i;
a[i] = 1;
dfs(cur + 1);
a[i] = 0;
}
}
}
int main()
{
while (cin >> n)
{
k++;
cout << "Case " << k << ":" << endl;
dfs(1);
cout << endl;
}
}