300.最长递增子序列
思路与重点
- dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度。
- 位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i];
}
return result;
}
};
674. 最长连续递增序列
思路与重点
- 概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关。
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
int result = 1;
vector<int> dp(nums.size() ,1);
for (int i = 1; i < nums.size(); i++) {
if (nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
if (dp[i] > result) result = dp[i];
}
return result;
}
};
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
int result = 1;
int count = 1;
for (int i = 1; i < nums.size(); i++) {
if (nums[i] > nums[i - 1]) {
count++;
} else {
count = 1;
}
if (count > result) result = count;
}
return result;
}
};
718. 最长重复子数组
思路与重点
- dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
- 根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
- 滚动数组解法:可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。
class Solution {
public:
int findLength(vector<int>& A, vector<int>& B) {
vector<int> dp(vector<int>(B.size() + 1, 0));
int result = 0;
for (int i = 1; i <= A.size(); i++) {
for (int j = B.size(); j > 0; j--) {
if (A[i - 1] == B[j - 1]) {
dp[j] = dp[j - 1] + 1;
} else dp[j] = 0;
if (dp[j] > result) result = dp[j];
}
}
return result;
}
};