AI芯片、晶圆代工双战线反击,英特尔能否王者归来?

英特尔在新一轮AI浪潮中面临着数据中心业务增速缓慢与代工业务盈利尚未显现的问题,尽管如此,通过加大在AI芯片和代工领域的投入,英特尔试图在竞争激烈的市场中找回地位。Gaudi3的发布展示了其在性价比上的策略,同时代工业务的布局可能成为英特尔增长的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新一轮AI浪潮引发的算力需求急速膨胀,在将GPU之王英伟达捧上神坛的同时,也让英特尔这位CPU霸主显得有些落寞。

财报显示,2024年第一季度,英特尔营收保持增长,但利润却无较大起色。

而其也给出第二季度业绩指引:营收125-135亿美元,低于分析师预期的136.3亿美元;调整后EPS为0.2美元,低于分析师预期的0.24美元;预计毛利率为43.5%,低于分析师预期的45.3%。

这似乎显现出英特尔的发展信心不足,但面对竞争,英特尔仍有冲劲,从其大举押注AI芯片及芯片代工的动作来看,英特尔正在全新AI时代找回失落的王座。

业绩向好之下,英特尔有何烦忧?

财报数据显示,2024年第一季度,英特尔营收127.24亿美元,同比增长8.61%;净亏损4.37亿美元,同比收窄84.21%。

可以看出,英特尔的整体经营情况是显著向好的。对此,英特尔首席执行官帕特・基辛格(Pat Gelsinger)在一份声明中也做出表示:“我们的客户端、边缘和数据中心产品组合的强大创新推动了英特尔收入增长。”

不过,从企业仍处于亏损中的表现来看,英特尔的业务还有较大优化空间。以英特尔被寄予厚望的两大业务板块——数据中心和人工智能业务、代工业务为例。

财报显示,英特尔的数据中心和人工智能业务收入约30亿美元,虽然相比去年同期增长5%,但AI热潮带动新一轮数据中心投资高峰之下,这样的增速似乎并未明显受益于行业面增长。

具体而言,当前为了夯实竞逐AI的底座,亚马逊、微软、谷歌等巨头都在数据中心业务上投入巨资,如谷歌去年第四季度的资本支出同比增长45%达到110亿美元,其中近半用于数据基础设施建设。

强劲的需求带动下,2024财年第四季度(截至1月28日),英伟达的数据中心业务营收规模达到约184亿美元,同比激增409%。

相比之下,英特尔相关业务的增长潜能似乎还未充分释放。

其实,一直以来,无论是PC市场还是数据中心市场,英特尔的优势均集中在CPU(中央处理器)领域,但2021年以来,人工智能技术快速发展,且由于Al服务器通常搭载以GPU(图形处理器)为主的加速芯片,GPU开始成为全球数据中心增量市场的主角。

根据Verified Market Research的数据,2021年全球GPU市场规模335亿元,2028年全球GPU市场规模有望达到4774亿元,数据中心市场的主导玩家也成为了英伟达。

不过,在这一轮转折期,英特尔也面临一定机遇,这就涉及到其代工业务的发展。

2021年,英特尔提出IDM2.0战略,打破“自家芯片自家造”的传统,将芯片生产独立运营出来,以契合市场需求。

具体而言,随着以GPU为主的AI芯片需求快速膨胀,芯片产能瓶颈日益凸显,比如英伟达主要通过台积电代工,但受台积电CoWoS先进封装产能限制,2023年下半年,英伟达就出现了高性能计算卡交货周期普遍延长至12-16个月的情况。这一背景下,英特尔布局芯片代工的重要性显著。

此外,美国及欧盟纷纷推出芯片法案,对于欧美本土企业扩建晶圆代工厂提供巨额补贴。种种利好,都为英特尔加码晶圆代工提供了难得的驱动力。

不过,从一季度财报来看,英特尔代工业务似乎还未真正进入收获期。财报显示,2024年一季度,英特尔代工业务实现营收44亿美元,同比下滑10%,营业亏损25亿美元。

这样的表现也不难理解。首先,晶圆厂建置成本极高。根据机构估算,建造一座月产量在5万片晶圆的2nm工厂需要的成本约为280亿美元(约合人民币1998.44亿元),而同样产能的3nm工厂的成本约为200亿美元(约合人民币1427.46亿元)。

而为了打开业务发展空间,目前英特尔正在不断加强代工基础设施建设。据悉,2023年以来,英特尔相继公布了在美国、欧洲和以色列兴建半导体制造工厂的计划,在各地政府的纷纷补助下,总投资金额高达千亿美元。

其次,据了解,英特尔代工板块由企业体系内原有的芯片制造相关部门合并而成,长期服务于内部订单,并不需要独立承担盈亏,这也导致其在服务外部客户、开拓更大市场上,或需要一定适应期。

综合来看,目前英特尔仍然处在深度调整阶段,而从最新布局来看,英特尔仍将加速押注数据中心及代工业务:当前,公司斥巨资购买了最先进的High NA EUV光刻机;4月份,发布新一代AI芯片Gaudi 3,对标英伟达H100。

而在市场竞争激烈的局面下,英特尔的大举进击足够胸有成竹吗?

双战线反击,英特尔能否重返王座??

当前,AI技术的跃进式发展,正在不断拉动智能算力市场规模扩大,数据显示,预计2022年至2027年我国智能算力规模年均复合增长率达33.9%。

面对爆发性的市场需求和日趋加剧的竞争态势,英特尔的进击策略仍然体现在产品端,如Gaudi 3的发布,被视为对英伟达在AI芯片市场领导地位的挑战。

英特尔声称,与英伟达H100芯片相比,Gaudi 3推理能力平均提高50%,能效平均提高40%,运行人工智能模型的速度是H100的1.5倍。与此同时,Gaudi 3还有一个极其重要的优势,“成本仅为英伟达 H100 的一小部分”,这无疑让下游需求方充满期待。

实际上,当前英伟达GPU一卡难求所带来的价格攀升,也影响了下游科技公司对AI的布局。据悉,国内可以买到的单卡算力2P 的H800价格高达20万/张,若算力需求达到2000P,企业仅用卡成本就达到2亿元。这种情况下,性价比更高的产品无疑更受市场欢迎。

而Gaudi 3价格优势的实现,或源于英特尔并未全部采用最尖端的技术。比如,在制程方面,Gaudi 3采用的是台积电5纳米工艺,而在内存方面,Gaudi 3未采用最新的HBM3(高带宽内存)。

这一定程度也引起市场对英特尔产品竞争力的疑虑。因为Gaudi 3对标的H100是英伟达两年前基于Hopper GPU架构发布的产品,而上个月英伟达基于BlackWell GPU架构发布的 B100又进行了一轮大幅的升级,在性能方面远胜英特尔的Gaudi 3。这种情况下,英特尔能以新品真正突围吗?

其实,联系英特尔当前的业绩表现来看,不追求前沿配置,而是在控制成本的前提下大幅提升芯片性能,或许是更聪明的产品策略。

当前,英伟达已在AI加速计算方面具备绝对的技术和生态领先优势,在这种局面下,若英特尔不惜一切进行追赶,成本压力势必会大幅攀升(今年第一季度,英特尔研发费用为43.82亿美元,占总营收的比例已经高达34.4%),回正利润更需漫长周期。因此,通过洞察市场痛点,打造差异性产品,或是更加稳妥的选择。

而为了探寻更大的增长空间,英特尔还有一大战略即推进代工业务发展。正如前文所述,该领域布局对投入要求颇高,而在难以缩减扩大产能等固定支出的情况下,控制成本的另一手段即提高成本效率。因此,可以看到,英特尔已经成功拿下全球首台高数值孔径的EUV光刻机,随着时间的推移,这或将持续降低英特尔的制造成本。

此外,根据财报,英特尔即将完成“四年五个制程节点”计划,其中Intel 7,Intel 4和Intel 3已实现大规模量产。这样来看,英特尔或许能在未来斩获更多订单。

对此,英特尔CEO基辛格也做出表示:“随着英特尔代工的发展,我们有望在明年重获制程方面的领先性,我们对推动全年持续增长的计划充满信心。”

不过,从行业竞争的持续以及芯片代工“重资产、长周期”的产业属性来看,老牌芯片企业英特尔还有诸多硬仗要打。

作者:坚白

来源:美股研究社

<think>好的,我现在要解决用户在IAR编译器中遇到的错误:“incomplete type is not allowed”。首先,我需要理解这个错误的含义和常见原因。根据我的知识库,这个错误常发生在代码中使用了未完全定义的类型,比如结构体或联合体声明了但未定义,或者前向声明了某个类型但没有提供完整的定义。 首先,我应该检查用户代码中是否有结构体或联合体的声明但没有定义的情况。比如,如果有一个结构体声明为`struct MyStruct;`,但没有后续的完整定义,那么在需要该结构体大小或成员的地方,编译器就会报这个错误。这时候,需要用户补全结构体的定义,包括成员变量。 其次,检查是否在头文件中只声明了类型而没有包含定义。例如,如果在头文件中使用前向声明,但在使用该类型的源文件中没有包含实际的定义头文件,这也会导致错误。此时,需要确保在使用类型的地方包含了正确的头文件,或者将前向声明替换为完整的定义。 另外,还要考虑typedef的问题。如果用户使用了typedef创建别名,但原始类型未完全定义,同样会引发错误。例如,`typedef struct MyStruct MyType;`之后,如果尝试使用MyType但MyStruct尚未定义,就会出错。需要确保在使用typedef之前,原始类型已经被完整定义。 此外,数组声明中的类型不完整也是一个常见原因。比如声明数组时,如果元素类型未完全定义,编译器无法确定数组的大小,导致错误。需要检查数组声明中的类型是否已经完整定义。 可能还有其他情况,比如在C和C++混合编程时,如果没有正确使用extern "C",或者在头文件中遗漏了必要的包含,也可能导致类型不完整。需要用户检查这些方面。 接下来,我需要将这些可能的原因整理成清晰的解决步骤,并给出具体的代码示例,帮助用户理解如何修改。同时,根据用户提供的引用内容,虽然引用[1]和引用[2]是关于其他错误的,但用户可能希望看到类似的结构,即分点说明解决方案,并引用相关资源。 最后,生成相关问题,帮助用户进一步了解可能相关的编译错误,比如类型未定义、前向声明问题等。这样用户可以有更全面的认识,预防其他类似错误的发生。</think>### IAR编译器错误'incomplete type is not allowed'解决方案 该错误表示代码中使用了**未完全定义的类型**,编译器无法确定其内存布局或成员信息。以下是具体原因及解决方法: #### 1. 结构体/联合体未定义完整 若声明了结构体但未定义成员,在实例化时会报错: ```c struct MyStruct; // 前向声明不完整 struct MyStruct var; // 错误:使用未完成类型 ``` **解决方案**:补全类型定义 ```c struct MyStruct { int id; char name[20]; }; ``` #### 2. 头文件包含缺失 当跨文件使用类型时,需确保定义可见: ```c // file.h struct Data; // 前向声明 // file.c struct Data { // 实际定义 int value; }; ``` **解决方案**:在使用该类型的文件中包含定义头文件 ```c #include "file.c" // 包含实际定义 ``` #### 3. typedef别名问题 使用typedef时原始类型必须完整: ```c typedef struct Node NodeT; // 前向声明 NodeT* ptr; // 允许指针声明 NodeT instance; // 错误:不完整类型 ``` **解决方案**:先完成类型定义再typedef ```c struct Node { int data; struct Node* next; }; typedef struct Node NodeT; ``` #### 4. 数组声明不完整 数组元素类型必须完全定义: ```c struct Element; struct Element arr[10]; // 错误:元素类型未定义 ``` **解决方案**: ```c struct Element { int type; float value; }; struct Element arr[10]; // 合法 ``` #### 调试建议 1. 在IAR工程中搜索错误行号定位问题代码 2. 使用Go to Definition功能追踪类型定义 3. 检查所有头文件包含链 4. 确认没有循环依赖的头文件 编译器需要知道类型的完整信息才能: - 计算sizeof大小 - 分配内存空间 - 访问成员变量 - 进行类型对齐 [^1]: 类似类型转换错误可参考浮点转整型的类型适配问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值