机器学习---线性回归、多元线性回归、代价函数

1. 线性回归

回归属于有监督学习中的一种方法。该方法的核心思想是从连续型统计数据中得到数学模型,然后

将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。

回归是由达尔文的表兄弟Francis Galton发明的。Galton于1877年完成了第一次回归预测,目的是

根据上一代豌豆的种子(双亲)的尺寸来预测下一代豌豆种子(孩子)的尺寸(身高)。Galton在

大量对象上应用了回归分析,甚至包括人的身高。他得到的结论是:如果双亲的高度比平均高度

高,他们的子女也倾向于平均身高但尚不及双亲,这里就可以表述为:孩子的身高向着平均身高回

归。Galton在多项研究上都注意到了这一点,并将此研究方法称为回归。

比如:有一个房屋销售的数据如下

如果来了一个新的面积,假设在销售价钱的记录中没有的,怎么处理?

解决方法:用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上

这个点对应的值返回。如果用一条直线去拟合,可能是下面的样子:

常用概念和符号:

房屋销售记录表:训练集(training set)或者训练数据(training data),是我们流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值