POJ - 2387 Til the Cows Come Home (最短路) (day_10_J)

在一片广阔的田野中,Bessie需要找到从苹果树林回到谷仓的最短路径,以确保她能获得足够的睡眠。面对众多地标和双向牛径,如何规划路线才能使Bessie快速抵达目的地?本文通过描述一个经典的最短路径问题,展示了如何利用图论和算法解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Til the Cows Come Home

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 80251 Accepted: 26484
Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John’s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1…N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input

  • Line 1: Two integers: T and N

  • Lines 2…T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1…100.
    Output

  • Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
    Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output

90

题目分析:

简单的最短路。

代码实现:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<stack>
#include<cstdlib>
#include<cmath>
#include<queue>
//#include <bits/stdc++.h>
using namespace std;

const int INF = 0x3f3f3f3f;
#define pf          printf
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define ms(i,j) memset(i,j,sizeof(i))

int a[1005][1005],low[1005],p[1005];
bool newv[1005];
int main()
{
    int n,m,t,tt,ttt,v,sum;
    while(~sff(m,n))
    {
        sum=0;
        fill(a[0],a[0]+1005*1005,INF);
        ms(low,0);
        ms(p,0);
        for(int i=0; i<m; i++)
        {
            sfff(t,tt,ttt);
            if(a[t][tt]>ttt)
            {
                a[t][tt]=ttt;
                a[tt][t]=ttt;
            }
        }
        ms(newv,0);
        for(int i=1; i<=n; i++)
        {
            low[i]=a[1][i];
            if(low[i]==INF)
                p[i]=-1;
            else
                p[i]=1;
        }
        newv[1]=1;
        for(int i=2; i<=n; i++)
        {
            int mini=INF;
            v=0;
            for(int j=1; j<=n; j++)
            {
                if(!newv[j]&&low[j]<mini)
                {
                    mini=low[j];
                    v=j;
                }
            }
            if(v)
            {
                newv[v]=1;
                for(int j=1; j<=n; j++)
                {
                    if(!newv[j]&&a[j][v]<INF&&low[v]+a[v][j]<low[j])
                    {
                        low[j]=a[j][v]+low[v];
                        p[j]=v;
                    }
                }
            }
        }
        int x=n;
        while(x!=1)
        {
            sum+=a[x][p[x]];
            x=p[x];
        }
        pf("%d\n",sum);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值