可汗学院:统计学第四次学习

本文深入探讨了统计学中的线性回归、卡方分布和方差分析等关键概念。线性回归通过最小平方函数建立自变量与因变量的关系模型;卡方分布描述了多个独立正态分布随机变量平方和的概率分布;方差分析则用于检验两组及以上样本均数差异的显著性,通过分析组间差异和组内差异来评估实验条件的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计学第四次学习
线性回归
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。
卡方分布
若n个相互独立的随机变量ξ₁,ξ₂,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。
性质:1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大, 分布趋近于正态分布;卡方分布密度曲线下的面积都是1.
2) 分布的均值与方差可以看出,随着自由度 的增大,χ2分布向正无穷方向延伸(因为均值 越来越大),分布曲线也越来越低阔(因为方差 越来越大)。
3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。
方差分析
定义:
方差分析(ANOVA)又称“变异数分析”或“F检验”,是由R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。
原理:
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体 。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值