摘要
经典UNet的体系架构在某些方面存在着局限性。因此本文对其结构提出了改进。1)设计高效的CNN架构来取代编码器和解码器;2)在最先进的U-Net模型的基础上,应用残差模块来取代编码器和解码器之间的跳过连接来进行改进。
医学图像分割是通过一些自动和半自动的方法来最小化感兴趣区域。。有许多传统的算法被设计来分割组织或身体器官。这些方法可以分为:基于区域的聚类、基于边缘的聚类、基于阈值的聚类和基于特征的聚类。
本文提出了一种双通道UNet模型-DC-UNet
方法
MultiResUNet
在医学图像中,感兴趣的目标对象常常有所不同,因此为了更好的分割结果,网络需要具备在不同的尺度上分析不同目标的能力。基于这一思想,Szegedy[27]引入了一种革命性的架构——Inception Block。该初始块利用不同内核大小的卷积层并行从图像中提取不同尺度的特征。初始块如图2所示。在最初的版本中,初始块简单地将1 × 1,3 × 3,5 × 5卷积层和3 × 3最大池化层并行组合。然后,将不同尺度的特征进行拼接,发送到下一层。然而,这个版本的一个大问题是维数会导致计算爆炸
如图2中(b)的降维版本解决了这一问题,在计算3x3和5x5的卷积之前,使用1x1的卷积层来降维。
虽然可以使用1x1的卷积层来降低维度,但是使用更大的卷积核来进行卷积也是相当耗时的,因此Inception模块可以进一步简化为下图所示的结构使用两个3x3的卷积来代替一个5x5的卷积。