analysis
很容易写出如下矩阵关系
( f [ n − 1 ] f [ n − 2 ] ) × ( A 1 B 0 ) = ( f [ n ] f [ n − 1 ] ) \begin{pmatrix} f[n-1] & f[n-2]\\ \end{pmatrix} \times \begin{pmatrix} A & 1\\ B & 0\\ \end{pmatrix} =\begin{pmatrix} f[n] & f[n-1]\\ \end{pmatrix} (f[n−1]f[n−2])×(AB10)=(f[n]f[n−1])
(不知道怎么推?)
于是快速幂就可以解决问题了
code
#include<bits/stdc++.h>
using namespace std;
#define loop(i,start,end) for(register int i=start;i<=end;++i)
#define clean(arry,num) memset(arry,num,sizeof(arry))
#define anti_loop(i,start,end) for(register int i=start;i>=end;--i)
#define ll long long
template<typename T>void read(T &x){
x=0;char r=getchar();T neg=1;
while(r>'9'||r<'0'){if(r=='-')neg=-1;r=getchar();}
while(r>='0'&&r<='9'){x=(x<<1)+(x<<3)+r-'0';r=getchar();}
x*=neg;
}
#define maxn (2147483648+10)
ll a,b,n;
struct martix{
ll m[10][10];
void init(){clean(m,0);}
};
inline martix mul(martix in1,martix in2,int a,int b,int c){
martix output;
output.init();
loop(i,1,a){
loop(j,1,b){
loop(k,1,c){
output.m[i][k]+=in1.m[i][j]*in2.m[j][k];
output.m[i][k]%=7;
}
}
}
return output;
}
inline martix ksm(martix a,int x){
martix res;res.init();res.m[1][1]=1;res.m[2][2]=1;
martix stag=a;
while(x){
if(x&1)res=mul(res,stag,2,2,2);
x>>=1;
stag=mul(stag,stag,2,2,2);
}
return res;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("datain.txt","r",stdin);
#endif
read(a);
read(b);
read(n);
if(n<=2){
printf("1\n");
return 0;
}
martix zy;zy.init();
zy.m[1][1]=a;zy.m[2][1]=b;zy.m[1][2]=1;
martix res;res.init();res.m[1][1]=1;res.m[1][2]=1;
res=mul(res,ksm(zy,n-2),1,2,2);
printf("%lld\n",res.m[1][1]);
return 0;
}