题意:
给一个n(1<=n<=1000000);
求
∏i=1n∏j=1nlcm(i,j)gcd(i,j)(mod104857601)\prod_{i=1}^n\prod_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}(mod 104857601)i=1∏nj=1∏ngcd(i,j)lcm(i,j)(mod104857601)
题解:
公式推演:
∏i=1n∏j=1nlcm(i,j)gcd(i,j)\prod_{i=1}^n\prod_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}∏i=1n∏j=1ngcd(i,j)lcm(i,j)
=∏i=1n∏j=1ni∗jgcd(i,j)2=\prod_{i=1}^n\prod_{j=1}^n\frac{i*j}{gcd(i,j)^2}=∏i=1n∏j=1ngcd(i,j)2i∗j
=(∏i=1n∏j=1ni∗j)(∏i=1n∏j=1ngcd(i,j)−2)=(\prod_{i=1}^n\prod_{j=1}^ni*j)(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2})=(∏i=1n∏j=1ni∗j)(∏i=1n∏j=1ngcd(i,j)−2)
=(∏i=1nin∗n!)(∏i=1n∏j=1ngcd(i,j)−2)=(\prod_{i=1}^ni^n*n!)(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2})=(∏i=1nin∗n!)(∏i=1n∏j=1ngcd(i,j)−2)
=(n!)2n∗(∏i=1n∏j=1ngcd(i,j)−2)=(n!)^{2n}*(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2})=(n!)2n∗(∏i=1n∏j=1ngcd(i,j)−2)
=(n!)2n∗(∏i=1n∏j=1ngcd(i,j)−2)=(n!)^{2n}*(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2})=(n!)2n∗(∏i=1n∏j=1ngcd(i,j)−2)
把∏i=1n∏j=1ngcd(i,j)\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)∏i=1n∏j=1ngcd(i,j)拿出来单独看
∏i=1n∏j=1ngcd(i,j)\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)∏i=1n∏j=1ngcd(i,j)
=∏d=1n∏i=1n∏j=1n[gcd(i,j)==d]=\prod_{d=1}^n\prod_{i=1}^n\prod_{j=1}^n[gcd(i,j)==d]=∏d=1n∏i=1n∏j=1n[gcd(i,j)==d]
=∏d=1nd∑i=1n∑j=1n[gcd(i,j)==d]=\prod_{d=1}^nd^{\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==d]}=∏d=1nd∑i=1n∑j=1n[gcd(i,j)==d]
=∏d=1nd∑i=1⌊nd⌋∑j=1⌊nd⌋[gcd(i,j)==1]=\prod_{d=1}^nd^{\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[gcd(i,j)==1]}=∏d=1nd∑i=1⌊dn⌋∑j=1⌊dn⌋[gcd(i,j)==1]
令sum[x]=∑i=1xϕ(i)sum[x]=\sum_{i=1}^x\phi(i)sum[x]=∑i=1xϕ(i)
由莫比乌斯反演可以得到:
(n!)2n∗(∏d=1nd2sum⌊nd⌋−1)−2(n!)^{2n}*(\prod_{d=1}^nd^{2sum\lfloor\frac{n}{d}\rfloor-1})^{-2}(n!)2n∗(d=1∏nd2sum⌊dn⌋−1)−2
边上那个-2用欧拉降幂整掉,这题只给7MB空间,很容易被卡,用原地做法,分块也可以,分块确实可以更快点,但是得多开点空间,我这里就不用分块了
code:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+5;
const int mod=104857601;
int prime[80000],phi[N],tot=0;
ll fac=1;
inline int read() {
int x=0,w=0;char ch=getchar();
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return w?-x:x;
}
void init(int maxn){
phi[1]=1;
for(int i=2;i<maxn;i++){
fac=fac*i%mod;
if(!phi[i]){
prime[tot++]=i;
phi[i]=i-1;
}
for(int j=0;j<tot&&prime[j]*i<maxn;j++){
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<maxn;i++)phi[i]=(phi[i-1]+phi[i])%(mod-1);
}
ll fast(ll x,ll y=mod-1){
ll ans=1;
while(y){
if(y&1)ans=ans*x%mod;
x=x*x%mod;
y>>=1;
}
return ans;
}
int main()
{
int n=read();
init(n+1);
ll ans1,ans2=1;
ans1=fast(fac,2*n);
for(int i=1;i<=n;i++){
ll power=((2-4*phi[n/i])%(mod-1)+mod-1)%(mod-1);
ans2=ans2*fast(i,power)%mod;
}
printf("%lld",ans1*ans2%mod);
return 0;
}
本文深入解析了一道数学算法竞赛题目,针对大规模数论问题,通过巧妙的数学公式推导,将复杂度极高的原问题转化为易于处理的形式。详细介绍了如何利用莫比乌斯反演和欧拉函数解决∏i=1n∏j=1nlcm(i,j)gcd(i,j)(mod104857601)的问题,并提供了高效的C++代码实现。
1151

被折叠的 条评论
为什么被折叠?



