基于深度学习的图像风格迁移研究
前言
什么是深度学习?
深度学习是机器学习的一种,机器学习是研究人工智能的必经途径。深度学习以神经网络为核心,神经网络由输入层、隐藏层和输出层组成。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,图像处理,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。
什么是图像风格迁移?
图像风格迁移是将一张图像x的艺术风格迁移到另一张图像y上,使得迁移后生成的图像保持图像y的图像内容,并具有图像x的艺术风格,艺术风格可以是油画、水墨、漫画、卡通…

图像风格迁移方法
利用深度学习方法进行风格迁移是图像领域研究的热点之一。当前主流的基于深度学习的图像风格迁移方法可以划分为两类:基于图像迭代的图像风格迁移方法、基于模型迭代的图像风格迁移方法。
基于图像迭代的图像风格迁移方法
最具有代表性的基于图像迭代的图像风格迁移方法,也是最原始的图像迁移方法,是由Leon A. Gatys等人在《A Neural Algorithm of Artistic Style》提出的。Leon A. Gatys等人在论文提出的基于图像迭代的风格迁移方法,经过上千次的迭代,生成不错的效果图,完美地融合原始图像的内容和油画的艺术风格。Leon A. Gatys在论文中主要表达:发现了卷积神经网络(CNN)的内容和风格是可以分割的。论文

深度学习在图像风格迁移领域展现出强大能力,从基于图像迭代的方法如VGG19的纹理合成,到基于模型迭代的快速风格迁移网络,大大提升了效率。卷积神经网络(CNN)和生成对抗网络(GAN)在此过程中扮演关键角色。CycleGAN作为无监督学习的代表,允许在无配对数据下进行风格迁移,降低了对训练数据的依赖。
最低0.47元/天 解锁文章
595





