Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
Input
The first line is an integer T indicating the case number.(1<=T<=65)
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.
Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.
At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
Output
Output a line with a integer, means the chances starvae can get at most.
Sample Input
3 7 8 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 5 7 1 6 7 1 1 7 6 7 1 2 1 2 3 1 1 3 3 3 4 1 3 5 1 4 6 1 5 6 1 1 6 2 2 1 2 1 1 2 2 1 2
Sample Output
2 1 1
题意:找不重复的最短路的条数
思路:先dj求出最短路径长度,用d[i]表示起点到i点的最短路径长度,网络流建边,每条边容量为1,正边的长度为w,
反边为-w,网络流跑图的时候只有当d[to] = d[u] + w时,这连个点之间才可以转移,然后Dinic最大流就好了
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 50;
int INF = 1e9;
int n, m;
struct Edge
{
int to, next, w, cap;
} edge[maxn * 2];
int k, head[maxn];
void add(int a, int b, int c){
edge[k].to = b;
edge[k].w = c;
edge[k].cap = 1;
edge[k].next = head[a];
head[a] = k++;
edge[k].to = a;
edge[k].w = -c;
edge[k].cap = 0;
edge[k].next = head[b];
head[b] = k++;
}
struct qnode
{
int u, c;
bool operator < (const qnode &r) const{
return c > r.c;
}
};
int d[maxn];
priority_queue<qnode> que;
void dj(int s){
while(que.size()){
que.pop();
}
que.push(qnode{s, 0});
for(int i = 1; i <= n; i++){
d[i] = INF;
}
d[s] = 0;
while(que.size()){
qnode tmp = que.top();
que.pop();
int u = tmp.u;
for(int i = head[u] ; i != -1; i = edge[i].next){
if(edge[i].w < 0){
continue;
}
int to = edge[i].to;
int w = edge[i].w;
if(d[to] > d[u] + w){
d[to] = d[u] + w;
que.push(qnode{to, d[to]});
}
}
}
}
int dis[maxn];
int cur[maxn];
int bfs(int s, int t){
queue<int> que;
for(int i = 1; i <= n; i++){
dis[i] = 0;
}
que.push(s);
dis[s] = 1;
while(que.size()){
int u = que.front();
que.pop();
for(int i = head[u]; i != -1; i = edge[i].next){
int to = edge[i].to;
int cap = edge[i].cap;
if(!dis[to] && cap && d[to] == d[u] + edge[i].w){
dis[to] = dis[u] + 1;
if(to == t){
return 1;
}
que.push(to);
}
}
}
return 0;
}
int dfs(int u, int maxf, int t){
if(u == t){
return maxf;
}
int ret = 0;
for(int i = cur[u]; i != -1; i = edge[i].next){
cur[u] = i;
int to = edge[i].to;
int cap = edge[i].cap;
if(dis[to] == dis[u] + 1 && cap && d[to] == d[u] + edge[i].w){
int mi = min(maxf - ret, cap);
cap = dfs(to, mi, t);
edge[i].cap -= cap;
edge[i ^ 1].cap += cap;
ret += cap;
if(ret == maxf){
return ret;
}
}
}
return ret;
}
int Dinic(int s, int t){
int ans = 0;
while(bfs(s, t)){
for(int i = 1; i <= n; i++){
cur[i] = head[i];
}
ans += dfs(s, INF, t);
}
return ans;
}
int main() {
int tt;
scanf("%d", &tt);
while(tt--){
k = 0;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++){
head[i] = -1;
}
for(int i = 1; i <= m; i++){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
if(a == b){ //不考虑自环,放进去也不会wa
continue;
}
add(a, b, c);
}
int s, t;
scanf("%d%d", &s, &t);
dj(s);
printf("%d\n", Dinic(s, t));
}
return 0;
}