Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it’s said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don’t know how many chances at most he can make a data with the girl he likes . Could you help starvae?
Input
The first line is an integer T indicating the case number.(1<=T<=65)
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.
Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it’s distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.
At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
Output
Output a line with a integer, means the chances starvae can get at most.
Sample Input
3
7 8
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
1 7
6 7
1 2 1
2 3 1
1 3 3
3 4 1
3 5 1
4 6 1
5 6 1
1 6
2 2
1 2 1
1 2 2
1 2
Sample Output
2
1
1
给定一张有向图,求最短路径的条数,源点S和终点T在最后一行给出。
大概思路是:
正向反向分别求一次SPFA,然后将正向图遍历一遍,对于每一条边(u,v)->c,如果正向最短路dis1[u]+反向最短路dis2[v]+边权值c=正向最短路dis1[T],则这条路径就是最短路的一条路径,将其进行网络流建边,从u到v,容量为1,最后求一遍S到T的最大流即可。
这里用的ISAP求最大流
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=1e5+5;
const int maxm=1e5+5;
const int INF=0x3f3f3f3f;
int n,m,head1[maxn],head2[maxn],ne1,ne2,out[maxn],vis[maxn],dis1[maxn],dis2[maxn],s,ans;
int head[maxn],cur[maxn],dep[maxn],ne3,pre[maxn],num[maxn],maxflow;
int S,T;
struct edge
{
int to,cost,next;
}e1[maxm],e2[maxm],e[maxm*2];
void add1(int u,int v,int w)
{
e1[ne1].to=v;
e1[ne1].cost=w;
e1[ne1].next=head1[u];
head1[u]=ne1++;
e2[ne2].to=u;
e2[ne2].cost=w;
e2[ne2].next=head2[v];
head2[v]=ne2++;
}
void add2(int u,int v,int w)
{
e[ne3].to=v;
e[ne3].cost=w;
e[ne3].next=head[u];
head[u]=ne3++;
e[ne3].to=u;
e[ne3].cost=0;
e[ne3].next=head[v];
head[v]=ne3++;
}
void init()
{
ne1=0;
memset(head1,-1,sizeof(head1));
ne2=0;
memset(head2,-1,sizeof(head2));
memset(dis1,0x3f,sizeof(dis1));
memset(dis2,0x3f,sizeof(dis2));
memset(head,-1,sizeof(head));
ne3=0;
memset(num,0,sizeof(num));
maxflow=0;
}
void spfa(int x,int f)
{
memset(vis,0,sizeof(vis));
queue<int> que;
while(!que.empty()) que.pop();
que.push(x);
vis[x]=1;
if(f) dis1[x]=0;
else dis2[x]=0;
while(!que.empty())
{
int u=que.front();
que.pop();
vis[u]=0;
if(f==1)
{
for(int i=head1[u];i!=-1;i=e1[i].next)
{
int v=e1[i].to;
if(dis1[v]>dis1[u]+e1[i].cost)
{
dis1[v]=dis1[u]+e1[i].cost;
if(!vis[v])
{
vis[v]=1;
que.push(v);
}
}
}
}
else
{
for(int i=head2[u];i!=-1;i=e2[i].next)
{
int v=e2[i].to;
if(dis2[v]>dis2[u]+e2[i].cost)
{
dis2[v]=dis2[u]+e2[i].cost;
if(!vis[v])
{
vis[v]=1;
que.push(v);
}
}
}
}
}
}
queue<int> q;
void bfs(int t)
{
while(!q.empty()) q.pop();
for(int i=1;i<=n;i++) cur[i]=head[i];
for(int i=1;i<=n;i++) dep[i]=n;
dep[t]=0;
q.push(t);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=e[i].next)
{
if(dep[e[i].to]==n&&e[i^1].cost)
{
dep[e[i].to]=dep[u]+1;
q.push(e[i].to);
}
}
}
}
int addflow(int s,int t)
{
int ans=INF,u=t;
while(u!=s)
{
ans=min(ans,e[pre[u]].cost);
u=e[pre[u]^1].to;
}
u=t;
while(u!=s)
{
e[pre[u]].cost-=ans;
e[pre[u]^1].cost+=ans;
u=e[pre[u]^1].to;
}
return ans;
}
void ISAP(int s,int t)
{
int u=s;
bfs(t);
for(int i=1;i<=n;i++) num[dep[i]]++;
while(dep[s]<n)
{
if(u==t)
{
maxflow+=addflow(s,t);
u=s;
}
int flag=0;
for(int &i=cur[u];i!=-1;i=e[i].next)
{
if(dep[u]==dep[e[i].to]+1&&e[i].cost)
{
flag=1;
pre[e[i].to]=i;
u=e[i].to;
break;
}
}
if(!flag)
{
int minn=n-1;
for(int i=head[u];i!=-1;i=e[i].next)
{
if(e[i].cost)
{
minn=min(minn,dep[e[i].to]);
}
}
if((--num[dep[u]])==0) break;
dep[u]=minn+1;
num[dep[u]]++;
cur[u]=head[u];
if(u!=s) u=e[pre[u]^1].to;
}
}
}
void Find()
{
while(!q.empty()) q.pop();
memset(vis,0,sizeof(vis));
vis[S]=1;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head1[u];i!=-1;i=e1[i].next)
{
int v=e1[i].to;
if(dis1[u]+dis2[v]+e1[i].cost==dis1[T])
{
add2(u,v,1);
}
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
int main()
{
int tt;
scanf("%d",&tt);
while(tt--)
{
init();
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add1(x,y,z);
}
scanf("%d%d",&S,&T);
spfa(S,1);
spfa(T,0);
Find();
ISAP(S,T);
printf("%d\n",maxflow);
}
}