Marriage Match IV
题意:给定一张图,起点 s,终点 t,每条路只能走一次,问从s 到 t 的最短路径有几种
思路:先寻找最短路径中的可行边。寻找方法是,先从s 跑一边最短路,记数组为 dis1, 从t 跑一边反向图的最短路,记数组为dis2。对于每一条边,如果 dis1[u] + dis2[v] + w == dis1[t] ,这条边就在最短路径上。。。 对于每一条可行边,其容量都是1,跑一边最大流,即是ans。 注意:如果你是用矩阵跑dinic,每一次都是边的容量 ++
代码:
#include<bits/stdc++.h>
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair<int,int>
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define INT(t) int t; scanf("%d",&t)
#define LLI(t) LL t; scanf("%I64d",&t)
using namespace std;
const int maxn = 1e3 + 10;
const int inf = 0x3f3f3f3f;
struct xx {
int u, v, nex, w;
xx() {}
xx(int u, int v, int nex, int w):
u(u), v(v), nex(nex), w(w) {}
} edge[maxn * 100];
int head[maxn];
int dis1[maxn];
int dis2[maxn];
int cnt;
int c[maxn][maxn];
int dep[maxn];
void init() {
for(int i = 0; i < maxn; i ++) {
head[i] = -1;
dis1[i] = dis2[i] = inf;
cnt = 0;
}
clr(c, 0);
}
void dij(int x, int *dis) {
dis[x] = 0;
priority_queue<pair<int, int> > Q;
Q.push(MP(-dis[x], x));
while(!Q.empty()) {
int now = Q.top().second;
Q.pop();
for(int i = head[now]; ~i; i = edge[i].nex) {
int v = edge[i].v;
int d = edge[i].w;
if(dis[v] > dis[now] + d) {
dis[v] = dis[now] + d;
Q.push(MP(-dis[v], v));
}
}
}
}
int bfs(int s, int t,int m) { //重新建图,按层次建图
queue<int> q;
while(!q.empty())
q.pop();
memset(dep, -1, sizeof(dep));
dep[s] = 0;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int v = 1; v <= m; v++) {
if(c[u][v] > 0 && dep[v] == -1) { //如果可以到达且还没有访问,可以到达的条件是剩余容量大于0,没有访问的条件是当前层数还未知
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[t] != -1;
}
int dfs(int u, int mi, int t,int m) { //查找路径上的最小流量
if(u == t)
return mi;
for(int v = 1; v <= m; v++) {
if(c[u][v] > 0 && dep[v] == dep[u] + 1) {
int tmp = dfs(v, min(mi, c[u][v]), t, m);
if(tmp > 0) {
c[u][v] -= tmp;
c[v][u] += tmp;
return tmp;
}
}
}
return 0;
}
int dinic(int s, int t,int m) {
int ans = 0, tmp;
while(bfs(s, t, m)) {
while(1) {
tmp = dfs(s, inf, t, m);
if(tmp == 0)
break;
ans += tmp;
}
}
return ans;
}
int main() {
int t;
scanf("%d", &t);
while(t --) {
init();
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i ++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
edge[cnt] = xx(a, b, head[a], c);
head[a] = cnt ++;
}
int A, B;
scanf("%d%d", &A, &B);
dij(A, dis1);
for(int i = 0; i < maxn; i ++)
head[i] = -1;
cnt = 0;
for(int i = 0; i < m; i ++) {
int u = edge[i].u;
int v = edge[i].v;
int w = edge[i].w;
edge[i] = xx(v, u, head[v], w);
head[v] = cnt ++;
}
dij(B, dis2);
for(int i = 0; i < m; i ++) {
int u = edge[i].u;
int v = edge[i].v;
int w = edge[i].w;
if(dis1[v] + dis2[u] + w == dis1[B])
c[v][u] ++;
}
printf("%d\n", dinic(A, B, n));
}
return 0;
}