tf1.x究竟到底如何如何使用Embedding?

本文对比了OneHot编码与Embedding技术在处理离散特征时的不同之处,阐述了Embedding如何有效减少特征维度,提供了TensorFlow 1.x中使用Embedding的实际案例。

如何使用Embedding?

最近需要用到Embedding做特征嵌入,但是网上找不到embedding的具体用法,东拼西凑终于看懂了,写篇文章总结一下,顺便整理一下来龙去脉。

Embedding可以说是一种对离散特征进行编码的手段、
而说到离散特征编码,相信大部分人第一是将会想到Onehot编码,举例回顾一下Onehot编码。

1. 什么是OneHot编码

mnist数据集相信大家都已经耳熟能详,是一个用于手写数字分类的数据集,共有0-9十个数字,所以其label必然也会有10种:0-9,对应数字0-9。
那么如果使用OneHot编码,那么:

0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
2: [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
3: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
4: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
5: [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值